4 resultados para Cloud cover
Resumo:
Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus) conservation) and delayed harvest areas (created for American marten (Martes americana atrata) conservation). This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options that specify deferment and timing of harvest for large blocks helped ensure the stable presence of an intact mature forest matrix over time. The management scenario that focused on maintaining compositional targets best supported biodiversity objectives by providing the composition patterns required by the 13 focal species, but this scenario may be improved by adding some broad-scale spatial objectives to better maintain large blocks of interior forest habitat through time.
Resumo:
Roadside surveys such as the Breeding Bird Survey (BBS) are widely used to assess the relative abundance of bird populations. The accuracy of roadside surveys depends on the extent to which surveys from roads represent the entire region under study. We quantified roadside land cover sampling bias in Tennessee, USA, by comparing land cover proportions near roads to proportions of the surrounding region. Roadside surveys gave a biased estimate of patterns across the region because some land cover types were over- or underrepresented near roads. These biases changed over time, introducing varying levels of distortion into the data. We constructed simulated population trends for five bird species of management interest based on these measured roadside sampling biases and on field data on bird abundance. These simulations indicated that roadside surveys may give overly negative assessments of the population trends of early successional birds and of synanthropic birds, but not of late-successional birds. Because roadside surveys are the primary source of avian population trend information in North America, we conclude that these surveys should be corrected for roadside land cover sampling bias. In addition, current recommendations about the need to create more early successional habitat for birds may need reassessment in the light of the undersampling of this habitat by roads.
Resumo:
Avian communities in cloud forests have high levels of endemism and are at major risk given the accelerated rate of habitat fragmentation. Nevertheless, the response of these communities to changes in fragment size remains poorly understood. We evaluated species richness, bird community density, community composition, and dominance as indicators of the response to fragment size in a fragmented cloud forest landscape in central Veracruz, Mexico. Medium-sized fragments had statistically higher than expected species richness and more even communities, which may be a reflection of the intermediate disturbance hypothesis, in which medium-sized fragments are exploited by both forest and disturbance-associated species. Bird density also reached higher values in medium-sized fragments, which may indicate a carrying capacity in this habitat. However, large cloud forest fragments had a distinct taxonomic and functional composition, attributable to an increased number of understory insectivore species and canopy frugivores. By comparison, omnivorous species associated with human-altered habitats were more abundant in smaller fragments. Hence, although medium-sized cloud forest fragments had higher species richness and high bird density, large forest tracts maintained a distinct avian community composition, particularly of insectivorous and frugivorous species. Furthermore, the underlying response to fragmentation can only be properly addressed when contrasting several community attributes, such as richness, density, composition, and species dominance. Therefore, cloud forest conservation should aim to preserve the remaining large forest fragments to maintain comprehensive avian communities and avoid local extinctions.