2 resultados para Canada-U.S. Border


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Prairie Pothole Region of North America has been modified by agriculture during the past 100 yr, resulting in habitat loss, fragmentation, and degradation that have reduced the abundance and productivity of many wildlife species. The 1985 U.S. Farm Bill provided economic incentives to agriculture that are considered by many to be beneficial to nesting waterfowl and other wildlife. Canada has not experienced an equally comprehensive legislative initiative, which would seem to indicate that benefits to waterfowl in Canada should lag behind those in the United States. However, with the removal of some agricultural subsidies in Canada during the 1990s, the amount of perennial cover in the Canadian prairies increased to levels similar to those of the 1970s. Therefore, it is unclear whether and how the U.S. and Canadian prairies might differ with regard to habitat quality for nesting waterfowl. We used historical and contemporary data to compare temporal trends in duck nest success between the United States and Canada and to assess how mean nest success varied with proportion of cropland and wetland density. The data best supported models with nonlinear temporal trends that varied between the two countries and suggested that mean nest success in Canada declined from its high point in 1930s and remained below the long-term value of 0.16 until the end of the time series in 2005. Mean nest success in the United States also declined from its high point in the 1930s, but increased to above the long-term value of 0.25 during the early 2000s. Mean nest success varied negatively with proportion of cropland in both the United States and Canada. Mean nest success was positively correlated with pond density at Canadian sites, but showed only a weak association with pond density at U.S. sites. All models explained the low proportions of the variation in nest success, suggesting that unmeasured factors such as the abundance and identity of nest predators may have strong effects on nest success. Nonetheless, these results support earlier suggestions that agricultural policy that encourages permanent cover positively influences duck reproductive success. We also found that, for reasons that are not entirely clear, nest success for the same intensity of row cropping was generally higher in the United States than in Canada. Further research is required to elucidate the exact nature of the composition, size, and distribution of permanent cover that coincides with greater average nest success by dabbling ducks in the United States. In addition, the data suggest that the benefits that might accrue from increases in the amount of perennial cover in Canada would be better realized if these efforts are accompanied by strong measures to conserve wetlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how climate change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first-year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.