8 resultados para 370501 Population Trends and Policies
Resumo:
Worldwide marine protected areas (MPAs) have been designated to protect marine resources, including top predators such as seabirds. There is no conclusive information on whether protected areas can improve population trends of seabirds when these are further exploited as tourist attractions, an activity that has increased in past decades. Humboldt Penguins (Spheniscus humboldti) and Magellanic Penguins (S. magellanicus) breed sympatrically on Puñihuil Islets, two small coastal islands off the west coast of Chiloé Island (41° S) in southern Chile that are subject to exploitation for tourism. Our goal was to compare the population size of the mixed colony of Humboldt and Magellanic Penguins before and after protection from unregulated tourism and freely roaming goats in 1997. For this purpose, two censuses were conducted in 2004 and 2008, and the numbers compared with those obtained in 1997 by other authors. The proportion of occupied, unoccupied, and collapsed/flooded burrows changed between years; there were 68% and 34% fewer collapsed burrows in 2004 and 2008, respectively, than in 1997. For the total number of burrows of both species, we counted 48% and 63% more burrows in 2004 and 2008, respectively, than in 1997. We counted 13% more burrows of Humboldt Penguins in 2008 than in 1997, and for Magellanic Penguins, we estimated a 64% increase in burrows in 2008. Presumably, this was as a result of habitat improvement attributable to the exclusion of tourists and the removal of goats from the islets. Although tourist visits to the islets are prohibited, tourism activities around the colonies are prevalent and need to be taken into account to promote appropriate management.
Resumo:
A study to monitor boreal songbird trends was initiated in 1998 in a relatively undisturbed and remote part of the boreal forest in the Northwest Territories, Canada. Eight years of point count data were collected over the 14 years of the study, 1998-2011. Trends were estimated for 50 bird species using generalized linear mixed-effects models, with random effects to account for temporal (repeat sampling within years) and spatial (stations within stands) autocorrelation and variability associated with multiple observers. We tested whether regional and national Breeding Bird Survey (BBS) trends could, on average, predict trends in our study area. Significant increases in our study area outnumbered decreases by 12 species to 6, an opposite pattern compared to Alberta (6 versus 15, respectively) and Canada (9 versus 20). Twenty-two species with relatively precise trend estimates (precision to detect > 30% decline in 10 years; observed SE ≤ 3.7%/year) showed nonsignificant trends, similar to Alberta (24) and Canada (20). Precision-weighted trends for a sample of 19 species with both reliable trends at our site and small portions of their range covered by BBS in Canada were, on average, more negative for Alberta (1.34% per year lower) and for Canada (1.15% per year lower) relative to Fort Liard, though 95% credible intervals still contained zero. We suggest that part of the differences could be attributable to local resource pulses (insect outbreak). However, we also suggest that the tendency for BBS route coverage to disproportionately sample more southerly, developed areas in the boreal forest could result in BBS trends that are not representative of range-wide trends for species whose range is centred farther north.
Resumo:
There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species–area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species–area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km × 10 km) and regional (290 km × 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.
Resumo:
The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.
Resumo:
To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.