1 resultado para regression discrete models
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (31)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (47)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (19)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (26)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (5)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (10)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (22)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (7)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (19)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Nottingham eTheses (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (34)
- Queensland University of Technology - ePrints Archive (244)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (88)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (25)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- University of Connecticut - USA (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (26)
- University of Washington (5)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Detailed knowledge of waterfowl abundance and distribution across Canada is lacking, which limits our ability to effectively conserve and manage their populations. We used 15 years of data from an aerial transect survey to model the abundance of 17 species or species groups of ducks within southern and boreal Canada. We included 78 climatic, hydrological, and landscape variables in Boosted Regression Tree models, allowing flexible response curves and multiway interactions among variables. We assessed predictive performance of the models using four metrics and calculated uncertainty as the coefficient of variation of predictions across 20 replicate models. Maps of predicted relative abundance were generated from resulting models, and they largely match spatial patterns evident in the transect data. We observed two main distribution patterns: a concentrated prairie-parkland distribution and a more dispersed pan-Canadian distribution. These patterns were congruent with the relative importance of predictor variables and model evaluation statistics among the two groups of distributions. Most species had a hydrological variable as the most important predictor, although the specific hydrological variable differed somewhat among species. In some cases, important variables had clear ecological interpretations, but in some instances, e.g., topographic roughness, they may simply reflect chance correlations between species distributions and environmental variables identified by the model-building process. Given the performance of our models, we suggest that the resulting prediction maps can be used in future research and to guide conservation activities, particularly within the bounds of the survey area.