5 resultados para rare species
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
Temporal replicate counts are often aggregated to improve model fit by reducing zero-inflation and count variability, and in the case of migration counts collected hourly throughout a migration, allows one to ignore nonindependence. However, aggregation can represent a loss of potentially useful information on the hourly or seasonal distribution of counts, which might impact our ability to estimate reliable trends. We simulated 20-year hourly raptor migration count datasets with known rate of change to test the effect of aggregating hourly counts to daily or annual totals on our ability to recover known trend. We simulated data for three types of species, to test whether results varied with species abundance or migration strategy: a commonly detected species, e.g., Northern Harrier, Circus cyaneus; a rarely detected species, e.g., Peregrine Falcon, Falco peregrinus; and a species typically counted in large aggregations with overdispersed counts, e.g., Broad-winged Hawk, Buteo platypterus. We compared accuracy and precision of estimated trends across species and count types (hourly/daily/annual) using hierarchical models that assumed a Poisson, negative binomial (NB) or zero-inflated negative binomial (ZINB) count distribution. We found little benefit of modeling zero-inflation or of modeling the hourly distribution of migration counts. For the rare species, trends analyzed using daily totals and an NB or ZINB data distribution resulted in a higher probability of detecting an accurate and precise trend. In contrast, trends of the common and overdispersed species benefited from aggregation to annual totals, and for the overdispersed species in particular, trends estimating using annual totals were more precise, and resulted in lower probabilities of estimating a trend (1) in the wrong direction, or (2) with credible intervals that excluded the true trend, as compared with hourly and daily counts.
Resumo:
Estimates of abundance or density are essential for wildlife management and conservation. There are few effective density estimates for the Buff-throated Partridge Tetraophasis szechenyii, a rare and elusive high-mountain Galliform species endemic to western China. In this study, we used the temporary emigration N-mixture model to estimate density of this species, with data acquired from playback point count surveys around a sacred area based on indigenous Tibetan culture of protection of wildlife, in Yajiang County, Sichuan, China, during April–June 2009. Within 84 125-m radius points, we recorded 53 partridge groups during three repeats. The best model indicated that detection probability was described by covariates of vegetation cover type, week of visit, time of day, and weather with weak effects, and a partridge group was present during a sampling period with a constant probability. The abundance component was accounted for by vegetation association. Abundance was substantially higher in rhododendron shrubs, fir-larch forests, mixed spruce-larch-birch forests, and especially oak thickets than in pine forests. The model predicted a density of 5.14 groups/km², which is similar to an estimate of 4.7 – 5.3 groups/km² quantified via an intensive spot-mapping effort. The post-hoc estimate of individual density was 14.44 individuals/km², based on the estimated mean group size of 2.81. We suggest that the method we employed is applicable to estimate densities of Buff-throated Partridges in large areas. Given importance of a mosaic habitat for this species, local logging should be regulated. Despite no effect of the conservation area (sacred) on the abundance of Buff-throated Partridges, we suggest regulations linking the sacred mountain conservation area with the official conservation system because of strong local participation facilitated by sacred mountains in land conservation.
Resumo:
I examined lists of endangered species from northeastern and midwestern United States to assess the extent to which they were dominated by species considered rare due to their vulnerability to anthropogenic stressors or, instead, by species whose rarity might be explained otherwise. Northeastern states had longer species lists than midwestern states, and more species associated with locally rare prairie habitats. More species at the edge of their geographic range appeared on lists from the Northeast than the Midwest. About 70% of listed species overall have shown either no significant population trend, or increases, at the continental scale, but wetland and prairie species were frequently listed, consistent with the generally acknowledged, widespread loss of these habitats. Curiously, midwestern states tended to list fewer forest species, despite evidence that forest fragmentation there has had strongly deleterious effects on regional bird populations. Overall, species appear to be listed locally for a variety of reasons not necessarily related to their risk of extinction generally, potentially contributing to inefficient distributions of limited resources to deal effectively with species that legitimately require conservation attention. I advocate a continental perspective when listing species locally, and propose enhanced criteria for characterizing species as endangered at the local level.
Resumo:
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.
Resumo:
Large secondary-nesting birds such as ducks rely on appropriate cavities for breeding. The main objective of this study was to assess the availability of large cavities and the potential of a managed boreal coniferous landscape to provide nesting trees within the breeding area of the eastern population of Barrow’s Goldeneye (Bucephala islandica), a cavity-nesting species at risk in Canada. Woodpecker surveys were conducted in both conifer and mixed-wood landscapes, and cavities were sought in line transects distributed in unharvested and linear remnant stands of balsam fir (Abies balsamea) and black spruce (Picea mariana) as well as in cutblocks. No Pileated Woodpeckers (Dryocopus pileatus) were detected in the breeding area of Barrow’s Goldeneye, but the species was present in the nearby lowland area in which trembling aspen (Populus tremuloides) is abundant. Only 10 trees (0.2% of those sampled) supported cavities considered suitable for Barrow’s Goldeneye in terms of dimensions and canopy openness. Most of the suitable cavities found during this study were nonexcavated apical (chimney) cavities in relatively short snags that showed advanced states of decay. A diameter-at-breast-height threshold was determined for each tree species, after which the probability of cavity occurrence was enhanced in terms of potential cavity trees for Barrow’s Goldeneye. Remnant linear forest sites had lower potential tree densities than did their unharvested equivalents. Large cavities were thus a rare component in this boreal landscape, suggesting that they may be a limiting factor for this population at risk. Current even-aged forest management that mainly relies on clear-cut practices is likely to further reduce the potential of this landscape to provide trees with suitable cavities.