2 resultados para nebraska

em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increases in Snow Goose (Chen caerulescens) populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H) isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB) of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Birds frequently interact with people when they occur in coupled human-ecological or anthropogenic environments, which makes the protection of legally protected species a challenge. Flight initiation distances (FIDs) are often used to inform development of appropriate buffer distances required for human exclusion zones used to protect birds nesting in anthropogenic landscapes. Piping Plovers (Charadrius melodus) are protected by the Endangered Species Act in the United States and often nest in areas used by humans. Studies evaluating Piping Plover FIDs are limited and implementation of exclusion zones has been inconsistent across the species’ range. We measured Piping Plover response and FIDs to naturally occurring stimuli on public beaches at Lake McConaughy, Nebraska, USA. Piping Plover FIDs differed most by stimulus class (vehicle, human, dog, human with dog), Julian day, and hour of day. Piping Plover FIDs were greatest for dog and human with dog compared to humans and vehicles. For all types of stimuli, Piping Plover FIDs decreased over time during the nesting season and increased slightly during each day. In the majority of instances in which Piping Plovers left their nests, return times to the nest were relatively short (less than three minutes). These results suggest Piping Plovers become habituated to the presence of human-related stimuli over the course of a nesting season, but other explanations such as parental investment and risk allocation cannot be excluded. Additional research and improved guidance regarding the implementation of exclusion zones is needed so managers can implement effective protection programs in anthropogenic landscapes.