4 resultados para matrix model
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
Small, at-risk populations are those for which accurate demographic information is most crucial to conservation and recovery, but also where data collection is constrained by logistical challenges and small sample sizes. Migratory animals in particular may experience a wide range of threats to survival and reproduction throughout each annual cycle, and identification of life stages most critical to persistence may be especially difficult for these populations. The endangered eastern Canadian breeding population of Piping Plover (Charadrius melodus melodus) was estimated at only 444 adults in 2005, and extensive effort has been invested in conservation activities, reproductive monitoring, and marking of individual birds, providing a comprehensive data set on population dynamics since 1998. We used these data to build a matrix projection model for two Piping Plover population segments that nest in eastern Canada in order to estimate both deterministic and stochastic rates of population growth (λd and λs, respectively). Annual population censuses suggested moderate growth in abundance between 1998–2003, but vital rate estimates indicated that this temporary growth may be replaced by declines in the long term, both in southern Nova Scotia (λd = 1.0043, λs = 0.9263) and in the Gulf of St. Lawrence (λd = 0.9651, λs = 0.8214). Nonetheless, confidence intervals on λ estimates were relatively wide, highlighting remaining uncertainty in future population trajectories. Differences in projected growth between regions appear to be driven by low estimated juvenile post-fledging survival in the Gulf, but threats to juveniles of both population segments following departure from nesting beaches remain unidentified. Similarly, λ in both population segments was particularly sensitive to changes in adult survival as expected for most migratory birds, but very little is understood about the threats to Piping Plover survival during migration and overwintering. Consequently, we suggest that future recovery efforts for these and other vulnerable migrants should quantify and manage the largely unknown sources of both adult and juvenile mortality during non-breeding seasons while maintaining current levels of nesting habitat protection.
Resumo:
Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about life history and population dynamics of Lesser Scaup, we summarized published and unpublished estimates of vital rates recorded between 1934 and 2005, and developed matrix life-cycle models with these data for females breeding in the boreal forest, prairie-parklands, and both regions combined. We then used perturbation analysis to evaluate the effect of changes in a variety of vital-rate statistics on finite population growth rate and abundance. Similar to Greater Scaup (Aythya marila), our modeled population growth rate for Lesser Scaup was most sensitive to unit and proportional change in adult female survival during the breeding and non-breeding seasons, but much less so to changes in fecundity parameters. Interestingly, population growth rate was also highly sensitive to unit and proportional changes in the mean of nesting success, duckling survival, and juvenile survival. Given the small samples of data for key aspects of the Lesser Scaup life cycle, we recommend additional research on vital rates that demonstrate a strong effect on population growth and size (e.g., adult survival probabilities). Our life-cycle models should be tested and regularly updated in the future to simultaneously guide science and management of Lesser Scaup populations in an adaptive context.
Resumo:
The population dynamics of long-lived birds are thought to be very sensitive to changes in adult survival. However, where natal philopatry is low, recruitment from the larger metapopulation may have the strongest effect on population growth rate even in long-lived species. Here, we illustrate such a situation where changes in a seabird colony size appeared to be the consequence of changes in recruitment. We studied the population dynamics of a declining colony of Ancient Murrelets (Synthliboramphus antiquus) at East Limestone Island, British Columbia. During 1990-2010, Ancient Murrelet chicks were trapped at East Limestone Island while departing to sea, using a standard trapping method carried on throughout the departure period. Adult murrelets were trapped while departing from the colony during 1990-2003. Numbers of chicks trapped declined during 1990-1995, probably because of raccoon predation, increased slightly from 1995-2000 and subsequently declined again. Reproductive success was 30% lower during 2000-2003 than in earlier years, mainly because of an increase in desertions. The proportion of nonbreeders among adult birds trapped at night also declined over the study period. Mortality of adult birds, thought to be mainly prebreeders, from predators more than doubled over the same period. Apparent adult survival of breeders remained constant during 1991-2002 once the first year after banding was excluded, but the apparent survival rates in the first year after banding fell and the survival of birds banded as chicks to age three halved over the same period. A matrix model of population dynamics suggested that even during the early part of the study immigration from other breeding areas must have been substantial, supporting earlier observations that natal philopatry in this species is low. The general colony decline after 2000 probably was related to diminished recruitment, as evidenced by the lower proportion of nonbreeders in the trapped sample. Hence the trend is determined by the recruitment decisions of externally reared birds, rather than demographic factors operating on the local breeding population, an unusual situation for a colonial marine bird. Because of the contraction in the colony it may now be subject to a level of predation pressure from which recovery will be impossible without some form of intervention.
Resumo:
We hypothesized that although large populations may appear able to withstand predation and disturbance, added stochasticity in population growth rate (λ) increases the risk of dramatic population declines. Approximately half of the Aleutian Islands' population of Least Auklets (Aethia pusilla) breed at one large colony at Kiska Island in the presence of introduced Norway rats (Rattus norvegicus) whose population erupts periodically. We evaluated two management plans, do nothing or eradicate rats, for this colony, and performed stochastic elasticity analysis to focus future research and management. Our results indicated that Least Auklets breeding at Kiska Island had the lowest absolute value of growth rate and more variable λ's (neither statistically significant) during 2001-2010, when compared with rat-free colonies at Buldir and Kasatochi islands. We found variability in the annual proportional change in population size among islands with Kiska Island having the fastest rate of decline, 78% over 20 years. Under the assumption that the eradication of rats would result in vital rates similar to those observed at rat-free Buldir and Kasatochi islands, we found the projected population decline decreased from 78% to 24% over 20 years. Overall, eradicating rats at Kiska Island is not likely to increase Least Auklet vital rates, but will decrease the amount of variation in λ, resulting in a significantly slower rate of population decline. We recommend the eradication of rats from Kiska Island to decrease the probability of dramatic population declines and ensure the future persistence of this important colony.