2 resultados para credible commitments.

em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study to monitor boreal songbird trends was initiated in 1998 in a relatively undisturbed and remote part of the boreal forest in the Northwest Territories, Canada. Eight years of point count data were collected over the 14 years of the study, 1998-2011. Trends were estimated for 50 bird species using generalized linear mixed-effects models, with random effects to account for temporal (repeat sampling within years) and spatial (stations within stands) autocorrelation and variability associated with multiple observers. We tested whether regional and national Breeding Bird Survey (BBS) trends could, on average, predict trends in our study area. Significant increases in our study area outnumbered decreases by 12 species to 6, an opposite pattern compared to Alberta (6 versus 15, respectively) and Canada (9 versus 20). Twenty-two species with relatively precise trend estimates (precision to detect > 30% decline in 10 years; observed SE ≤ 3.7%/year) showed nonsignificant trends, similar to Alberta (24) and Canada (20). Precision-weighted trends for a sample of 19 species with both reliable trends at our site and small portions of their range covered by BBS in Canada were, on average, more negative for Alberta (1.34% per year lower) and for Canada (1.15% per year lower) relative to Fort Liard, though 95% credible intervals still contained zero. We suggest that part of the differences could be attributable to local resource pulses (insect outbreak). However, we also suggest that the tendency for BBS route coverage to disproportionately sample more southerly, developed areas in the boreal forest could result in BBS trends that are not representative of range-wide trends for species whose range is centred farther north.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal replicate counts are often aggregated to improve model fit by reducing zero-inflation and count variability, and in the case of migration counts collected hourly throughout a migration, allows one to ignore nonindependence. However, aggregation can represent a loss of potentially useful information on the hourly or seasonal distribution of counts, which might impact our ability to estimate reliable trends. We simulated 20-year hourly raptor migration count datasets with known rate of change to test the effect of aggregating hourly counts to daily or annual totals on our ability to recover known trend. We simulated data for three types of species, to test whether results varied with species abundance or migration strategy: a commonly detected species, e.g., Northern Harrier, Circus cyaneus; a rarely detected species, e.g., Peregrine Falcon, Falco peregrinus; and a species typically counted in large aggregations with overdispersed counts, e.g., Broad-winged Hawk, Buteo platypterus. We compared accuracy and precision of estimated trends across species and count types (hourly/daily/annual) using hierarchical models that assumed a Poisson, negative binomial (NB) or zero-inflated negative binomial (ZINB) count distribution. We found little benefit of modeling zero-inflation or of modeling the hourly distribution of migration counts. For the rare species, trends analyzed using daily totals and an NB or ZINB data distribution resulted in a higher probability of detecting an accurate and precise trend. In contrast, trends of the common and overdispersed species benefited from aggregation to annual totals, and for the overdispersed species in particular, trends estimating using annual totals were more precise, and resulted in lower probabilities of estimating a trend (1) in the wrong direction, or (2) with credible intervals that excluded the true trend, as compared with hourly and daily counts.