6 resultados para Woodpeckers
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
The Ivory-billed Woodpecker has long held a special place in the psyche of North American conservation, eliciting unusually colorful prose, even from scientists, as an icon of the wild. The reverence in which it was held did little to slow the habitat loss that led to its apparent extinction 60 years ago. A consequence of the emotion and attention associated with the amazing rediscovery of this species is that conservation biologists will be under considerable pressure to make good on this “second chance.” This poses a challenge to conservation paradigms that has important political consequences. First, the decline of the species is due to habitat loss, recovery from which has been much more seldom achieved than recovery from declines due to impacts on vital rates. This challenge is exacerbated by the enormous area requirements of the species. Second, the species at best exists as a critically small population. It will be difficult to make the case that a viable population can be established without undermining the small population paradigm that underlies conservation strategies for many other species. This has already resulted in some political backlash. Conservation of this species is best based on the one point of clear scientific consensus, that habitat is limiting, but this may result in additional political backlash because of conflicts with other land uses.
Resumo:
The Ivory-billed Woodpecker (Campephilus principalis) disappeared from the forests of southeastern North America in the early 20th Century and for more than 50 years has been widely considered extinct. On 21 May 2005, we detected a bird that we identified as an Ivory-billed Woodpecker in the mature swamp forest along the Choctawhatchee River in the panhandle of Florida. During a subsequent year of research, members of our small search team observed birds that we identified as Ivory-billed Woodpeckers on 14 occasions. We heard sounds that matched descriptions of Ivory-billed Woodpecker acoustic signals on 41 occasions. We recorded 99 putative double knocks and 210 putative kent calls. We located cavities in the size range reported for Ivory-billed Woodpeckers and larger than those of Pileated Woodpeckers (Dryocopus pileatus) that have been reported in the literature or that we measured in Alabama. We documented unique foraging signs consistent with the feeding behavior of Ivory-billed Woodpeckers. Our evidence suggests that Ivory-billed Woodpeckers may be present in the forests along the Choctawhatchee River and warrants an expanded search of this bottomland forest habitat.
Resumo:
Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.
Resumo:
Large secondary-nesting birds such as ducks rely on appropriate cavities for breeding. The main objective of this study was to assess the availability of large cavities and the potential of a managed boreal coniferous landscape to provide nesting trees within the breeding area of the eastern population of Barrow’s Goldeneye (Bucephala islandica), a cavity-nesting species at risk in Canada. Woodpecker surveys were conducted in both conifer and mixed-wood landscapes, and cavities were sought in line transects distributed in unharvested and linear remnant stands of balsam fir (Abies balsamea) and black spruce (Picea mariana) as well as in cutblocks. No Pileated Woodpeckers (Dryocopus pileatus) were detected in the breeding area of Barrow’s Goldeneye, but the species was present in the nearby lowland area in which trembling aspen (Populus tremuloides) is abundant. Only 10 trees (0.2% of those sampled) supported cavities considered suitable for Barrow’s Goldeneye in terms of dimensions and canopy openness. Most of the suitable cavities found during this study were nonexcavated apical (chimney) cavities in relatively short snags that showed advanced states of decay. A diameter-at-breast-height threshold was determined for each tree species, after which the probability of cavity occurrence was enhanced in terms of potential cavity trees for Barrow’s Goldeneye. Remnant linear forest sites had lower potential tree densities than did their unharvested equivalents. Large cavities were thus a rare component in this boreal landscape, suggesting that they may be a limiting factor for this population at risk. Current even-aged forest management that mainly relies on clear-cut practices is likely to further reduce the potential of this landscape to provide trees with suitable cavities.