19 resultados para Wildlife research.

em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many shorebirds are long-distance migrants and depend on the energy gained at stopover sites to complete migration. Competing hypotheses have described strategies used by migrating birds; the energy-selection hypothesis predicts that shorebirds attempt to maximize energy gained at stopover sites, whereas the time-selection hypothesis predicts that shorebirds attempt to minimize time spent at stopover sites. The energy- and time-selection hypotheses both predict that birds in better condition will depart sites sooner. However, numerous studies of stopover duration have found little support for this prediction, leading to the suggestion that migrating birds operate under energy and time constraints for only a small portion of the migratory season. During fall migration 2002, we tested the prediction that birds in better condition depart stopover sites sooner by examining the relationship between stopover duration and body condition for migrating Least Sandpipers (Calidris minutilla) at three stopover sites in the Lower Mississippi Alluvial Valley. We also tested the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team that shorebirds stay in the Mississippi Valley for 10 d. The assumption of 10 d was used to estimate the amount of habitat required by shorebirds in the Mississippi Valley during fall migration; a period longer than 10 d would increase the estimate of the amount habitat required. We used multiple-day constancy models of apparent survival and program MARK to estimate stopover duration for 293 individually color-marked and resighted Least Sandpipers. We found that a four-day constancy interval and a site x quadratic time trend interaction term best modeled apparent survival. We found only weak support for body condition as a factor explaining length of stopover duration, which is consistent with findings from similar work. Stopover duration estimates were 4.1 d (95% CI = 2.8–6.1) for adult Least Sandpipers at Bald Knob National Wildlife Refuge, Arkansas, 6.5 d (95% CI = 4.9–8.7) for adult and 6.1 d (95% CI =4.2–9.1) for juvenile Least Sandpipers at Yazoo National Wildlife Refuge, Mississippi, and 6.9 d (95% CI = 5.5–8.7) for juvenile Least Sandpipers at Morgan Brake National Wildlife Refuge, Mississippi. Based on our estimates of stopover duration and the assumption made by the Lower Mississippi Alluvial Valley Migratory Bird Science Team, there is sufficient habitat in the lower Mississippi Valley to support shorebirds during fall migration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To migrate successfully, birds need to store adequate fat reserves to fuel each leg of the journey. Migrants acquire their fuel reserves at stopover sites; this often entails exposure to predators. Therefore, the safety attributes of sites may be as important as the feeding opportunities. Furthermore, site choice might depend on fuel load, with lean birds more willing to accept danger to obtain good feeding. Here, we evaluate the factors underlying stopover-site usage by migrant Western Sandpipers (Calidris mauri) on a landscape scale. We measured the food and danger attributes of 17 potential stopover sites in the Strait of Georgia and Puget Sound region. We used logistic regression models to test whether food, safety, or both were best able to predict usage of these sites by Western Sandpipers. Eight of the 17 sites were used by sandpipers on migration. Generally, sites that were high in food and safety were used, whereas sites that were low in food and safety were not. However, dangerous sites were used if there was ample food abundance, and sites with low food abundance were used if they were safe. The model including both food and safety best-predicted site usage by sandpipers. Furthermore, lean sandpipers used the most dangerous sites, whereas heavier birds (which do not need to risk feeding in dangerous locations) used safer sites. This study demonstrates that both food and danger attributes are considered by migrant birds when selecting stopover sites, thus both these attributes should be considered to prioritize and manage stopover sites for conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Livestock grazing in the shortgrass steppe of the Intermountain region of British Columbia is predicted to have significant effects on grassland habitats and their associated ground-nesting bird communities. We tested whether grazed and ungrazed sites could be discriminated on the basis of their vegetation communities, whether the abundance of two ground-nesting bird species, Vesper Sparrow (Pooecetes gramineus) and Western Meadowlark (Sturnella neglecta), differed between grazed and ungrazed sites, and whether vegetation variables found to differ between grazed and ungrazed plots could be used to predict the abundance of the two bird species at a fine scale. Grazed sites were easily distinguishable from a site that had been ungrazed for >30 years based on the structure and composition of their vegetation communities. However, more detailed grazing categories could not be distinguished on the basis of vegetation characteristics. Despite the existence of grazing effects on vegetation structure and composition, we found no consistent differences in abundance of Vesper Sparrows and Western Meadowlarks between the grazed and ungrazed sites. However, there was weak evidence that the abundance of both species was higher at fine-scale plots (100 m radius point count station) with less bare ground and taller vegetation. Bare ground cover was lower on grazed plots, but vegetation was taller on ungrazed plots. Combined, our results suggest that low intensity grazing leads to grassland habitat change with both negative and positive effects on Vesper Sparrows and Western Meadowlarks, resulting in no net change in their broad-scale abundance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the northeastern United States, grassland birds regularly use agricultural fields as nesting habitat. However, birds that nest in these fields regularly experience nest failure as a result of agricultural practices, such as mowing and grazing. Therefore, information on both spatial and temporal patterns of habitat use is needed to effectively manage these species. We addressed these complex habitat use patterns by conducting point counts during three time intervals between May 21, 2002 and July 2, 2002 in agricultural fields across the Champlain Valley in Vermont and New York. Early in the breeding season, Bobolinks (Dolichonyx oryzivorus) used fields in which the landscape within 2500 m was dominated by open habitats. As mowing began, suitable habitat within 500 m became more important. Savannah Sparrows (Passerculus sandwichensis) initially used fields that contained a high proportion of suitable habitat within 500 m. After mowing, features of the field (i.e., size and amount of woody edge) became more important. Each species responded differently to mowing: Savannah Sparrows were equally abundant in mowed and uncut fields, whereas Bobolinks were more abundant in uncut fields. In agricultural areas in the Northeast, large areas (2000 ha) that are mostly nonforested and undeveloped should be targeted for conservation. Within large open areas, smaller patches (80 ha) should be maintained as high-quality, late-cut grassland habitat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Streaked Horned Lark (Eremophila alpestris strigata) is listed as endangered by the State of Washington, USA and by Canada under the Species at Risk Act and is also classified as a federal candidate for listing under the Endangered Species Act in the USA. A substantial portion of Streaked Horned Lark habitat has been lost or degraded, and range contraction has occurred in Oregon, Washington, and British Columbia. We estimate the vital rates (fecundity, adult and juvenile survival) and population growth rate (λ) for Streaked Horned Larks breeding in Washington, USA and conduct a Life-Stage Simulation Analysis (LSA) to evaluate which vital rate has the greatest influence on λ. We simulated changes in the three vital rates to examine how much they would need to be adjusted either independently or in concert to achieve a stable Streaked Horned Lark population (λ = 1). We also evaluated which fecundity component (the number of fledglings per egg laid or renesting interval) had the greatest impact on λ. The estimate of population growth suggests that Streaked Horned Larks in Washington are declining rapidly (λ = 0.62 ± 0.10) and that local breeding sites are not sustainable without immigration. The LSA results indicate that adult survival had the greatest influence on λ, followed by juvenile survival and fecundity. However, increases in vital rates led to λ = 1 only when adult survival was raised from 0.47 to 0.85, juvenile survival from 0.17 to 0.58, and fecundity from 0.91 to 3.09. Increases in breeding success and decreases in the renesting interval influenced λ similarly; however, λ did not reach 1 even when breeding success was raised to 100% or renesting intervals were reduced to 1 day. Only when all three vital rates were increased simultaneously did λ approach 1 without requiring highly unrealistic increases in each vital rate. We conclude that conservation activities need to target all or multiple vital rates to be successful. The baseline data presented here and subsequent efforts to manage Streaked Horned Larks will provide valuable information for management of other declining Horned Lark subspecies and other grassland songbirds across North America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the relative influence of environmental variables, especially climate, in driving variation in species diversity is becoming increasingly important for the conservation of biodiversity. The objective of this study was to determine to what extent climate can explain the structure and diversity of forest bird communities by sampling bird abundance in homogenous mature spruce stands in the boreal forest of the Québec-Labrador peninsula using variance partitioning techniques. We also quantified the relationship among two climatic gradients, summer temperature and precipitation, and bird species richness, migratory strategy, and spring arrival phenology. For the bird community, climate factors appear to be most important in explaining species distribution and abundance because nearly 15% of the variation in the distribution of the 44 breeding birds selected for the analysis can be explained by climate. The vegetation variables we selected were responsible for a much smaller amount of the explained variation (4%). Breeding season temperature seems to be more important than precipitation in driving variation in bird species diversity at the scale of our analysis. Partial correlation analysis indicated that bird species richness distribution was determined by the temperature gradient, because the number of species increased with increasing breeding season temperature. Similar results were observed between breeding season temperature and the number of residents, short-distance and long-distance migrants, and early and late spring migrants. Our results suggest that the northern and southern range boundaries of species are not equally sensitive to the temperature gradient across the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Population models are essential components of large-scale conservation and management plans for the federally endangered Golden-cheeked Warbler (Setophaga chrysoparia; hereafter GCWA). However, existing models are based on vital rate estimates calculated using relatively small data sets that are now more than a decade old. We estimated more current, precise adult and juvenile apparent survival (Φ) probabilities and their associated variances for male GCWAs. In addition to providing estimates for use in population modeling, we tested hypotheses about spatial and temporal variation in Φ. We assessed whether a linear trend in Φ or a change in the overall mean Φ corresponded to an observed increase in GCWA abundance during 1992-2000 and if Φ varied among study plots. To accomplish these objectives, we analyzed long-term GCWA capture-resight data from 1992 through 2011, collected across seven study plots on the Fort Hood Military Reservation using a Cormack-Jolly-Seber model structure within program MARK. We also estimated Φ process and sampling variances using a variance-components approach. Our results did not provide evidence of site-specific variation in adult Φ on the installation. Because of a lack of data, we could not assess whether juvenile Φ varied spatially. We did not detect a strong temporal association between GCWA abundance and Φ. Mean estimates of Φ for adult and juvenile male GCWAs for all years analyzed were 0.47 with a process variance of 0.0120 and a sampling variance of 0.0113 and 0.28 with a process variance of 0.0076 and a sampling variance of 0.0149, respectively. Although juvenile Φ did not differ greatly from previous estimates, our adult Φ estimate suggests previous GCWA population models were overly optimistic with respect to adult survival. These updated Φ probabilities and their associated variances will be incorporated into new population models to assist with GCWA conservation decision making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers.