3 resultados para Projection métaphorique
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
Small, at-risk populations are those for which accurate demographic information is most crucial to conservation and recovery, but also where data collection is constrained by logistical challenges and small sample sizes. Migratory animals in particular may experience a wide range of threats to survival and reproduction throughout each annual cycle, and identification of life stages most critical to persistence may be especially difficult for these populations. The endangered eastern Canadian breeding population of Piping Plover (Charadrius melodus melodus) was estimated at only 444 adults in 2005, and extensive effort has been invested in conservation activities, reproductive monitoring, and marking of individual birds, providing a comprehensive data set on population dynamics since 1998. We used these data to build a matrix projection model for two Piping Plover population segments that nest in eastern Canada in order to estimate both deterministic and stochastic rates of population growth (λd and λs, respectively). Annual population censuses suggested moderate growth in abundance between 1998–2003, but vital rate estimates indicated that this temporary growth may be replaced by declines in the long term, both in southern Nova Scotia (λd = 1.0043, λs = 0.9263) and in the Gulf of St. Lawrence (λd = 0.9651, λs = 0.8214). Nonetheless, confidence intervals on λ estimates were relatively wide, highlighting remaining uncertainty in future population trajectories. Differences in projected growth between regions appear to be driven by low estimated juvenile post-fledging survival in the Gulf, but threats to juveniles of both population segments following departure from nesting beaches remain unidentified. Similarly, λ in both population segments was particularly sensitive to changes in adult survival as expected for most migratory birds, but very little is understood about the threats to Piping Plover survival during migration and overwintering. Consequently, we suggest that future recovery efforts for these and other vulnerable migrants should quantify and manage the largely unknown sources of both adult and juvenile mortality during non-breeding seasons while maintaining current levels of nesting habitat protection.
Resumo:
For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i) non-breeding survivorship tends to be a strong driver of population growth; (ii) non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii) broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv) changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1) more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2) an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3) the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.