3 resultados para Pasture and forests
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
Grasslands are often grazed by cattle and many grassland birds nest on the ground, potentially exposing nests to trampling. We tested for trampling risk introduced by cattle to nests of endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) using experimentally paired grids of artificial nests (i.e., clay targets) similar in size to nests of Florida Grasshopper Sparrows and counted the number of clay targets that were broken in paired grazed and ungrazed enclosures. Clay targets in grazed grids were trampled 3.9% more often than their respective ungrazed grids, and measurements of cattle presence or density were correlated with the number of broken clay targets, suggesting that excluding cattle during breeding is an important management recommendation for the Florida Grasshopper Sparrow. Trampling rates within grazed enclosures were spatially homogeneous with respect to cattle infrastructure such as supplemental feeding troughs and fences, and forests and stocking density were poor predictors of trampling rates when excluding ungrazed grids. We used population viability analysis to compare quasi-extinction rates, intrinsic growth rates, and median abundance in grazed and ungrazed Florida Grasshopper Sparrow aggregations to further understand the biological significance of management aimed at reducing trampling rates during the breeding season. Simulations indicated that trampling from grazing increased quasi-extinction rates by 41% while reducing intrinsic growth rates by 0.048, and reducing median abundance by an average of 214 singing males after 50 years. Management should avoid grazing enclosures occupied by Florida Grasshopper Sparrows during the nesting season to minimize trampling rates. Our methods that combine trampling experiments with population viability analysis provide a framework for testing effects from trampling on other grassland ground-nesting birds, and can directly inform conservation and management of the Florida Grasshopper Sparrow.
Resumo:
Across North America, grassland songbirds have undergone steep population declines over recent decades, commonly attributed to agricultural intensification. Understanding the potential interactions between the impacts of climate change on the future distributions of these species and the availability of suitable vegetation for nesting can support improved risk assessments and conservation planning for this group of species. We used North American bioclimatic niche models to examine future changes in suitable breeding climate for 15 grassland songbird species at their current northern range limits along the boreal forest–prairie ecotone in Alberta, Canada. Our climate suitability projections, combined with the current distribution of native and tame pasture and cropland in Alberta, suggest that some climate-mediated range expansion of grassland songbirds in Alberta is possible. For six of the eight species projected to experience expansions of suitable climate area in Alberta, this suitable climate partly overlaps the current distribution of suitable land cover. Additionally, for more than half of the species examined, most of the area of currently suitable climate was projected to remain suitable to the end of the century, highlighting the importance of Alberta for the long-term persistence of these species. Some northern prairie-endemic species exhibited substantial projected northward shifts of both the northern and southern edges of the area of suitable climate. Baird’s Sparrow (Ammodramus bairdii) and Sprague’s Pipit (Anthus spragueii), both at-risk grassland specialists, are predicted to have limited climate stability within their current ranges, and their expansion into new areas of suitable climate may be limited by the availability of suitable land cover. Our results highlight the importance of the preservation and restoration of remaining suitable grassland habitat within areas of projected climate stability and beyond current northern range limits for the long-term persistence of many grassland songbird species in the face of climate change.