5 resultados para Harvest season

em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i) non-breeding survivorship tends to be a strong driver of population growth; (ii) non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii) broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv) changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1) more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2) an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3) the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual behavior that reduces vulnerability to predation can affect population dynamics of animals. Temperate-nesting Canada Geese (Branta canadensis maxima) have increased steadily throughout the Atlantic flyway and have become a nuisance in some parts of their range. The objective of our study was to describe movements and habitat use during the postbreeding period of Canada Geese recently established in southern Québec. More specifically, we wanted to determine whether geese were using areas where hunting was allowed to assess the potential of harvest to control the number of geese. We tracked a sample of geese fitted with radio or conventional alphanumeric collars throughout the fall in three zones characterized by different habitats and hunting pressure. Before the hunting season, geese left the breeding area where hunting was allowed to reach suburban areas where firearm discharge was prohibited or hunters’ numbers were low. These postbreeding movements occurred when juveniles were approximately three months old. We observed few local movements among zones once migrant geese from northern breeding populations reached the study area. Radio-collared geese used mainly natural habitats (75.4 ± 2.6%), followed by urban (14.4 ± 2.7%), and agricultural habitats (10.3 ± 0.8%). They were located 73.8 ± 6.2% of the time in areas where hunting was prohibited. Geese that attended their juveniles during brood rearing were more prone to use areas where firearm discharge was restricted than geese that had abandoned or lost their brood. This study shows that under the prevailing regulations, the potential of hunting to manage the increasing breeding population of Canada Geese in southern Québec is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual loss of nests by industrial (nonwoodlot) forest harvesting in Canada was estimated using two avian point-count data sources: (1) the Boreal Avian Monitoring Project (BAM) dataset for provinces operating in this biome and (2) available data summarized for the major (nonboreal) forest regions of British Columbia. Accounting for uncertainty in the proportion of harvest occurring during the breeding season and in avian nesting densities, our estimate ranges from 616 thousand to 2.09 million nests. Estimates of the impact on numbers of individuals recruited into the adult breeding population were made based on the application of survivorship estimates at various stages of the life cycle. Future improvements to this estimate are expected as better and more extensive avian breeding pair density estimates become available and as provincial forestry statistics become more refined, spatially and temporally. The effect of incidental take due to forestry is not uniform and is disproportionately centered in the southern boreal. Those species whose ranges occur primarily in these regions are most at risk for industrial forestry in general and for incidental take in particular. Refinements to the nest loss estimate for industrial forestry in Canada will be achieved primarily through the provision of more accurate estimates of the area of forest harvested annually during the breeding season stratified by forest type and Bird Conservation Region (BCR). A better understanding of survivorship among life-history stages for forest birds would also allow for better modeling of the effect of nest loss on adult recruitment. Finally, models are needed to project legacy effects of forest harvesting on avian populations that take into account forest succession and accompanying cumulative effects of landscape change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bachman’s Sparrow (Peucaea aestivalis), an endemic North American passerine, requires frequent (≤ 3 yr) prescribed fires to maintain preferred habitat conditions. Prescribed fires that coincide with the sparrow’s nesting season are increasingly used to manage sparrow habitat, but concerns exist regarding the effects that nesting-season fires may pose to this understory-dwelling species. Previous studies suggested that threats posed by fires might be lessened by reducing the extent of prescribed fires, thereby providing unburned areas close to the areas where fires eliminate ground-cover vegetation. To assess this hypothesis, we monitored color-marked male Bachman’s Sparrows on 2 sites where the extent of nesting-season fires differed 5-fold (> 70 ha vs. < 15 ha). Monthly survival for males did not differ between the large- and small-extent treatments, and survival rates exceeded 90% for all months except one during the second year of our study when fires were applied later in the season. Male densities also did not differ between treatments, but treatment-by-year interactions pointed to effects relating to the specific time that fires were applied. The distances separating observations of marked males before and after burns were smaller on small-extent treatments in the first year of study but larger on the small-extent treatments in the second year of study. Burn extents also had no consistent effect on postburn reproductive status. The largest extent we examined could have been too small to affect sparrow populations, but responses may also reflect sustainable metapopulation dynamics in a setting where a large sparrow population is maintained at a regional scale (> 100,000 ha) using frequent prescribed fire (≤ 2-yr return intervals). Additional research is needed regarding the effects that nesting-season fires may have on small, isolated populations as well as sites where much larger burn extents (> 100 ha) or longer burn intervals (> 2 yr) are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus) in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012) data set of Piping Plover abundance and productivity (nesting pairs and fledged young) collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.