12 resultados para Eider ducks
em Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux:
Resumo:
The Prairie Pothole Region of North America has been modified by agriculture during the past 100 yr, resulting in habitat loss, fragmentation, and degradation that have reduced the abundance and productivity of many wildlife species. The 1985 U.S. Farm Bill provided economic incentives to agriculture that are considered by many to be beneficial to nesting waterfowl and other wildlife. Canada has not experienced an equally comprehensive legislative initiative, which would seem to indicate that benefits to waterfowl in Canada should lag behind those in the United States. However, with the removal of some agricultural subsidies in Canada during the 1990s, the amount of perennial cover in the Canadian prairies increased to levels similar to those of the 1970s. Therefore, it is unclear whether and how the U.S. and Canadian prairies might differ with regard to habitat quality for nesting waterfowl. We used historical and contemporary data to compare temporal trends in duck nest success between the United States and Canada and to assess how mean nest success varied with proportion of cropland and wetland density. The data best supported models with nonlinear temporal trends that varied between the two countries and suggested that mean nest success in Canada declined from its high point in 1930s and remained below the long-term value of 0.16 until the end of the time series in 2005. Mean nest success in the United States also declined from its high point in the 1930s, but increased to above the long-term value of 0.25 during the early 2000s. Mean nest success varied negatively with proportion of cropland in both the United States and Canada. Mean nest success was positively correlated with pond density at Canadian sites, but showed only a weak association with pond density at U.S. sites. All models explained the low proportions of the variation in nest success, suggesting that unmeasured factors such as the abundance and identity of nest predators may have strong effects on nest success. Nonetheless, these results support earlier suggestions that agricultural policy that encourages permanent cover positively influences duck reproductive success. We also found that, for reasons that are not entirely clear, nest success for the same intensity of row cropping was generally higher in the United States than in Canada. Further research is required to elucidate the exact nature of the composition, size, and distribution of permanent cover that coincides with greater average nest success by dabbling ducks in the United States. In addition, the data suggest that the benefits that might accrue from increases in the amount of perennial cover in Canada would be better realized if these efforts are accompanied by strong measures to conserve wetlands.
Resumo:
Understanding source-sink dynamics of game birds is essential to harvest and habitat management but acquiring this information is often logistically and financially challenging using traditional methods of population surveys and banding studies. This is especially true for species such as the American Black Duck (Anas rubripes), which have low breeding densities and extensive breeding ranges that necessitate extensive surveys and banding programs across eastern North America. Despite this effort, the contribution of birds fledged from various landscapes and habitat types within specific breeding ranges to regional harvest is largely unknown but remains an important consideration in adaptive harvest management and targeted habitat conservation strategies. We investigated if stable isotope (δD, δ13C, δ15N) could augment our present understanding of connectivity between breeding and harvest areas and so provide information relevant to the two main management strategies for black ducks, harvest and habitat management. We obtained specimens from 200 hatch-year Black Duck wings submitted to the Canadian Wildlife Service Species Composition Survey. Samples were obtained from birds harvested in Western, Central, and Eastern breeding/harvest subregions to provide a sample representative of the range and harvest rate of birds harvested in Canada. We sampled only hatch-year birds to provide an unambiguous and direct link between production and harvest areas. Marine origins were assigned to 12%, 7%, and 5% of birds harvested in the Eastern, Central, and Western subregions, respectively. In contrast, 32%, 9%, and 5% of birds were assigned, respectively, to agricultural origins. All remaining birds were assigned to nonagricultural origins. We portrayed probability of origin using a combination of Bayesian statistical and GIS methods. Placement of most eastern birds was western Nova Scotia, eastern New Brunswick, Prince Edward Island, and southern Newfoundland. Agricultural birds from the Central region were consistent with the Saguenay region of Québec and the eastern claybelt with nonagricultural birds originating in the boreal. Western nonagricultural birds were associated with broad boreal origins from southern James Bay to Lake of the Woods and east to Cochrane, Ontario. Our work shows that the geographic origins, landscape, and habitat associations of hatch-year Black Ducks can be inferred using this technique and we recommend that a broad-scale isotopic study using a large sample of Canadian and US harvested birds be implemented to provide a continental perspective of source-sink population dynamics.
Resumo:
Detailed knowledge of waterfowl abundance and distribution across Canada is lacking, which limits our ability to effectively conserve and manage their populations. We used 15 years of data from an aerial transect survey to model the abundance of 17 species or species groups of ducks within southern and boreal Canada. We included 78 climatic, hydrological, and landscape variables in Boosted Regression Tree models, allowing flexible response curves and multiway interactions among variables. We assessed predictive performance of the models using four metrics and calculated uncertainty as the coefficient of variation of predictions across 20 replicate models. Maps of predicted relative abundance were generated from resulting models, and they largely match spatial patterns evident in the transect data. We observed two main distribution patterns: a concentrated prairie-parkland distribution and a more dispersed pan-Canadian distribution. These patterns were congruent with the relative importance of predictor variables and model evaluation statistics among the two groups of distributions. Most species had a hydrological variable as the most important predictor, although the specific hydrological variable differed somewhat among species. In some cases, important variables had clear ecological interpretations, but in some instances, e.g., topographic roughness, they may simply reflect chance correlations between species distributions and environmental variables identified by the model-building process. Given the performance of our models, we suggest that the resulting prediction maps can be used in future research and to guide conservation activities, particularly within the bounds of the survey area.
Resumo:
Populations of Lesser Scaup (Aythya affinis) have declined markedly in North America since the early 1980s. When considering alternatives for achieving population recovery, it would be useful to understand how the rate of population growth is functionally related to the underlying vital rates and which vital rates affect population growth rate the most if changed (which need not be those that influenced historical population declines). To establish a more quantitative basis for learning about life history and population dynamics of Lesser Scaup, we summarized published and unpublished estimates of vital rates recorded between 1934 and 2005, and developed matrix life-cycle models with these data for females breeding in the boreal forest, prairie-parklands, and both regions combined. We then used perturbation analysis to evaluate the effect of changes in a variety of vital-rate statistics on finite population growth rate and abundance. Similar to Greater Scaup (Aythya marila), our modeled population growth rate for Lesser Scaup was most sensitive to unit and proportional change in adult female survival during the breeding and non-breeding seasons, but much less so to changes in fecundity parameters. Interestingly, population growth rate was also highly sensitive to unit and proportional changes in the mean of nesting success, duckling survival, and juvenile survival. Given the small samples of data for key aspects of the Lesser Scaup life cycle, we recommend additional research on vital rates that demonstrate a strong effect on population growth and size (e.g., adult survival probabilities). Our life-cycle models should be tested and regularly updated in the future to simultaneously guide science and management of Lesser Scaup populations in an adaptive context.
Resumo:
Digital map products that integrate long-term duck population and land-use data are currently being used to guide conservation program delivery on the Canadian Prairies. However, understanding the inter-relationships between ducks and other grassland bird species would greatly enhance program planning and delivery. We hypothesized that ducks, and Northern Pintail (Anas acuta) in particular, may function as an umbrella guild for the overall breeding habitat quality for other grassland bird species. We compared grassland bird species richness and relative abundance among areas of low, moderate, and high predicted waterfowl breeding densities (i.e., duck density strata) in the southern Missouri Coteau, Saskatchewan. We conducted roadside point counts and delineated habitats within a 400 m radius of each point. The duck high-density stratum supported greater avian species richness and abundance than did the duck low-density stratum. Overall, duck and other grassland bird species richness and abundance were moderately correlated, with all r between 0.37 and 0.69 (all P < 0.05). Although the habitat requirements of Northern Pintail may overlap with those of other grassland endemics, priority grassland bird species richness was only moderately correlated with total pintail abundance in both years, and the abundances of pintail and grassland songbirds listed by the Committee on the Status of Endangered Wildlife in Canada were not correlated. No differences in the mean number of priority grassland species were detected among the strata. Adequate critical habitat for several priority species may not be protected if conservation is focused only in areas of moderate to high wetland density because large tracts of contiguous, dry grassland habitat (e.g., pasture) occur infrequently in high-quality duck habitat.
Resumo:
The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1) decline linearly with grazing intensity or (2) peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7–22.1), more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2–4.5). Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6–25.0%), whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed field was 33.9% (95% CI = 17.0–51.8%). Across the range of residual cover observed in this study, nests with above-average nest-site vegetation density had nesting success rates that exceeded the levels believed necessary to maintain duck populations. Our findings on complex and previously unreported relationships between grazing, nest density, and nesting success provide useful insights into the management and conservation of ground-nesting grassland birds.
Resumo:
Large secondary-nesting birds such as ducks rely on appropriate cavities for breeding. The main objective of this study was to assess the availability of large cavities and the potential of a managed boreal coniferous landscape to provide nesting trees within the breeding area of the eastern population of Barrow’s Goldeneye (Bucephala islandica), a cavity-nesting species at risk in Canada. Woodpecker surveys were conducted in both conifer and mixed-wood landscapes, and cavities were sought in line transects distributed in unharvested and linear remnant stands of balsam fir (Abies balsamea) and black spruce (Picea mariana) as well as in cutblocks. No Pileated Woodpeckers (Dryocopus pileatus) were detected in the breeding area of Barrow’s Goldeneye, but the species was present in the nearby lowland area in which trembling aspen (Populus tremuloides) is abundant. Only 10 trees (0.2% of those sampled) supported cavities considered suitable for Barrow’s Goldeneye in terms of dimensions and canopy openness. Most of the suitable cavities found during this study were nonexcavated apical (chimney) cavities in relatively short snags that showed advanced states of decay. A diameter-at-breast-height threshold was determined for each tree species, after which the probability of cavity occurrence was enhanced in terms of potential cavity trees for Barrow’s Goldeneye. Remnant linear forest sites had lower potential tree densities than did their unharvested equivalents. Large cavities were thus a rare component in this boreal landscape, suggesting that they may be a limiting factor for this population at risk. Current even-aged forest management that mainly relies on clear-cut practices is likely to further reduce the potential of this landscape to provide trees with suitable cavities.
Resumo:
The effort expended on reproduction may entail future costs, such as reduced survival or fecundity, and these costs can have an important influence on life-history optimization. For birds with precocial offspring, hypothesized costs of reproduction have typically emphasized nutritional and energetic investments in egg formation and incubation. We measured seasonal survival of 3856 radio-marked female Mallards (Anas platyrhynchos) from arrival on the breeding grounds through brood-rearing or cessation of breeding. There was a 2.5-fold direct increase in mortality risk associated with incubating nests in terrestrial habitats, whereas during brood-rearing when breeding females occupy aquatic habitats, mortality risk reached seasonal lows. Mortality risk also varied with calendar date and was highest during periods when large numbers of Mallards were nesting, suggesting that prey-switching behaviors by common predators may exacerbate risks to adults in all breeding stages. Although prior investments in egg laying and incubation affected mortality risk, most relationships were not consistent with the cost of reproduction hypothesis; birds with extensive prior investments in egg production or incubation typically survived better, suggesting that variation in individual quality drove both relationships. We conclude that for breeding female Mallards, the primary cost of reproduction is a fixed cost associated with placing oneself at risk to predators while incubating nests in terrestrial habitats.
Resumo:
Understanding factors that affect the distribution and abundance of species is critical to developing effective management plans for conservation. Our goal was to quantify the distribution and abundance of Canada Warbler (Cardellina canadensis), a threatened old-forest associate in Alberta, Canada. The Canada Warbler has declined across its range, including in Alberta where habitat loss and alteration from urban expansion, forestry, and energy development are changing the forest landscape. We used 110,427 point count survey visits from 32,287 unique survey stations to model local-level (150-m radius circular buffers) and stand-level (564-m radius circular buffers) habitat associations of the Canada Warbler. We found that habitat supporting higher densities of Canada Warblers was locally concentrated yet broadly distributed across Alberta’s boreal forest region. Canada Warblers were most commonly associated with older deciduous forest at the local scale, particularly near small, incised streams, and greater amounts of deciduous forest at the stand scale. Predicted density was lower in other forest types and younger age classes measured at the local scale. There was little evidence that local-scale fragmentation (i.e., edges created by linear features) influenced Canada Warbler abundance. However, current forestry practices in the province likely will reduce the availability of Canada Warbler habitat over time by cutting old deciduous forest stands. Our results suggest that conservation efforts aimed at Canada Warbler focus on retaining large stands of old deciduous forest, specifically stands adjacent to streams, by increasing the width of deciduous retention buffers along streams during harvest and increasing the size and number of old forest residual patches in harvested stands.