37 resultados para breeding season
Resumo:
Although mortality of birds from collisions with vehicles is estimated to be in the millions in the USA, Europe, and the UK, to date, no estimates exist for Canada. To address this, we calculated an estimate of annual avian mortality attributed to vehicular collisions during the breeding and fledging season, in Canadian ecozones, by applying North American literature values for avian mortality to Canadian road networks. Because owls are particularly susceptible to collisions with vehicles, we also estimated the number of roadkilled Barn owls (Tyto alba) in its last remaining range within Canada. (This species is on the IUCN red list and is also listed federally as threatened; Committee on the Status of Endangered Wildlife in Canada 2010, International Union for the Conservation of Nature 2012). Through seven Canadian studies in existence, 80 species and 2,834 specimens have been found dead on roads representing species from 14 orders of birds. On Canadian 1 and 2-lane paved roads outside of major urban centers, the unadjusted number of bird mortalities/yr during an estimated 4-mo (122-d) breeding and fledging season for most birds in Canada was 4,650,137 on roads traversing through deciduous, coniferous, cropland, wetlands and nonagricultural landscapes with less than 10% treed area. On average, this represents 1,167 birds killed/100 km in Canada. Adjusted for scavenging, this estimate was 13,810,906 (3,462 dead birds/100 km). For barn owls, the unadjusted number of birds killed annually on 4-lane roads during the breeding and fledging season, within the species geographic range in southern British Columbia, was estimated as 244 owls and, when adjusted for scavenging and observer bias (3.6 factor), the total was 851 owls.
Resumo:
Bachman’s Sparrow (Peucaea aestivalis), an endemic North American passerine, requires frequent (≤ 3 yr) prescribed fires to maintain preferred habitat conditions. Prescribed fires that coincide with the sparrow’s nesting season are increasingly used to manage sparrow habitat, but concerns exist regarding the effects that nesting-season fires may pose to this understory-dwelling species. Previous studies suggested that threats posed by fires might be lessened by reducing the extent of prescribed fires, thereby providing unburned areas close to the areas where fires eliminate ground-cover vegetation. To assess this hypothesis, we monitored color-marked male Bachman’s Sparrows on 2 sites where the extent of nesting-season fires differed 5-fold (> 70 ha vs. < 15 ha). Monthly survival for males did not differ between the large- and small-extent treatments, and survival rates exceeded 90% for all months except one during the second year of our study when fires were applied later in the season. Male densities also did not differ between treatments, but treatment-by-year interactions pointed to effects relating to the specific time that fires were applied. The distances separating observations of marked males before and after burns were smaller on small-extent treatments in the first year of study but larger on the small-extent treatments in the second year of study. Burn extents also had no consistent effect on postburn reproductive status. The largest extent we examined could have been too small to affect sparrow populations, but responses may also reflect sustainable metapopulation dynamics in a setting where a large sparrow population is maintained at a regional scale (> 100,000 ha) using frequent prescribed fire (≤ 2-yr return intervals). Additional research is needed regarding the effects that nesting-season fires may have on small, isolated populations as well as sites where much larger burn extents (> 100 ha) or longer burn intervals (> 2 yr) are used.
Resumo:
A study to monitor boreal songbird trends was initiated in 1998 in a relatively undisturbed and remote part of the boreal forest in the Northwest Territories, Canada. Eight years of point count data were collected over the 14 years of the study, 1998-2011. Trends were estimated for 50 bird species using generalized linear mixed-effects models, with random effects to account for temporal (repeat sampling within years) and spatial (stations within stands) autocorrelation and variability associated with multiple observers. We tested whether regional and national Breeding Bird Survey (BBS) trends could, on average, predict trends in our study area. Significant increases in our study area outnumbered decreases by 12 species to 6, an opposite pattern compared to Alberta (6 versus 15, respectively) and Canada (9 versus 20). Twenty-two species with relatively precise trend estimates (precision to detect > 30% decline in 10 years; observed SE ≤ 3.7%/year) showed nonsignificant trends, similar to Alberta (24) and Canada (20). Precision-weighted trends for a sample of 19 species with both reliable trends at our site and small portions of their range covered by BBS in Canada were, on average, more negative for Alberta (1.34% per year lower) and for Canada (1.15% per year lower) relative to Fort Liard, though 95% credible intervals still contained zero. We suggest that part of the differences could be attributable to local resource pulses (insect outbreak). However, we also suggest that the tendency for BBS route coverage to disproportionately sample more southerly, developed areas in the boreal forest could result in BBS trends that are not representative of range-wide trends for species whose range is centred farther north.
Resumo:
Detailed knowledge of waterfowl abundance and distribution across Canada is lacking, which limits our ability to effectively conserve and manage their populations. We used 15 years of data from an aerial transect survey to model the abundance of 17 species or species groups of ducks within southern and boreal Canada. We included 78 climatic, hydrological, and landscape variables in Boosted Regression Tree models, allowing flexible response curves and multiway interactions among variables. We assessed predictive performance of the models using four metrics and calculated uncertainty as the coefficient of variation of predictions across 20 replicate models. Maps of predicted relative abundance were generated from resulting models, and they largely match spatial patterns evident in the transect data. We observed two main distribution patterns: a concentrated prairie-parkland distribution and a more dispersed pan-Canadian distribution. These patterns were congruent with the relative importance of predictor variables and model evaluation statistics among the two groups of distributions. Most species had a hydrological variable as the most important predictor, although the specific hydrological variable differed somewhat among species. In some cases, important variables had clear ecological interpretations, but in some instances, e.g., topographic roughness, they may simply reflect chance correlations between species distributions and environmental variables identified by the model-building process. Given the performance of our models, we suggest that the resulting prediction maps can be used in future research and to guide conservation activities, particularly within the bounds of the survey area.
Resumo:
The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus) in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012) data set of Piping Plover abundance and productivity (nesting pairs and fledged young) collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.
Resumo:
Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers.