18 resultados para Grassland ecology
Resumo:
Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i) quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR) in Canada, (ii) estimated population densities by region and agricultural habitat type for each selected species, (iii) estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv) and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris) to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis). Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus) and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.
Resumo:
The Short-eared Owl (Asio flammeus) is an open-country species breeding in the northern United States and Canada, and has likely experienced a long-term, range-wide, and substantial decline. However, the cause and magnitude of the decline is not well understood. We set forth to address the first two of six previously proposed conservation priorities to be addressed for this species: (1) better define habitat use and (2) improve population monitoring. We recruited 131 volunteers to survey over 6.2 million ha within the state of Idaho for Short-eared Owls during the 2015 breeding season. We surveyed 75 transects, 71 of which were surveyed twice, and detected Short-eared Owls on 27 transects. We performed multiscale occupancy modeling to identify habitat associations, and performed multiscale abundance modeling to generate a state-wide population estimate. Our results suggest that within the state of Idaho, Short-eared Owls are more often found in areas with marshland or riparian habitat or areas with greater amounts of sagebrush habitat at the 1750 ha transect scale. At the 50 ha point scale, Short-eared Owls tend to associate positively with fallow and bare dirt agricultural land and negatively with grassland. Cropland was not chosen at the broader transect scale suggesting that Short-eared Owls may prefer more heterogeneous landscapes. On the surface our results may seem contradictory to the presumed land use by a “grassland” species; however, the grasslands of the Intermountain West, consisting largely of invasive cheatgrass (Bromus tectorum), lack the complex structure shown to be preferred by these owls. We suggest the local adaptation to agriculture represents the next best habitat to their historical native habitat preferences. Regardless, we have confirmed regional differences that should be considered in conservation planning for this species. Last, our results demonstrate the feasibility, efficiency, and effectiveness of utilizing public participation in scientific research to achieve a robust sampling methodology across the broad geography of the Intermountain West.