23 resultados para Forest regeneration
Resumo:
Understanding the relative influence of environmental variables, especially climate, in driving variation in species diversity is becoming increasingly important for the conservation of biodiversity. The objective of this study was to determine to what extent climate can explain the structure and diversity of forest bird communities by sampling bird abundance in homogenous mature spruce stands in the boreal forest of the Québec-Labrador peninsula using variance partitioning techniques. We also quantified the relationship among two climatic gradients, summer temperature and precipitation, and bird species richness, migratory strategy, and spring arrival phenology. For the bird community, climate factors appear to be most important in explaining species distribution and abundance because nearly 15% of the variation in the distribution of the 44 breeding birds selected for the analysis can be explained by climate. The vegetation variables we selected were responsible for a much smaller amount of the explained variation (4%). Breeding season temperature seems to be more important than precipitation in driving variation in bird species diversity at the scale of our analysis. Partial correlation analysis indicated that bird species richness distribution was determined by the temperature gradient, because the number of species increased with increasing breeding season temperature. Similar results were observed between breeding season temperature and the number of residents, short-distance and long-distance migrants, and early and late spring migrants. Our results suggest that the northern and southern range boundaries of species are not equally sensitive to the temperature gradient across the region.
Resumo:
Wilson’s Warbler (Cardellina pusilla; WIWA) has been declining for several decades, possibly because of habitat loss. We compared occupancy of territorial males in two habitat types of Québec’s boreal forest, alder (Alnus spp.) scrubland and recent clear-cuts. Singing males occurred in clusters, their occupancy was similar in both habitats, but increased with the amount of alder or clear-cut within 400 m of point-count stations. A despotic distribution of males between habitats appeared unlikely, because there were no differences in morphology between males captured in clear-cuts vs. alder. Those results contrast with the prevailing view, mostly based on western populations, that WIWA are wetland or riparian specialists, and provide the first evidence for a preference for large tracts of habitat in this species. Clear-cuts in the boreal forest may benefit WIWA by supplying alternative nesting habitat. However, the role of clear-cuts as source or sink habitats needs to be addressed with data on reproduction.
Resumo:
Silvicultural treatments have been shown to alter the composition of species assemblages in numerous taxa. However, the intensity and persistence of these effects have rarely been documented. We used a before-after, control-impact (BACI) paired design, i.e., five pairs of 25-ha study plots, 1-control and 1-treated plot, to quantify changes in the density of eight forest bird species in response to selection harvesting over six breeding seasons, one year pre- and five years postharvest. Focal species included mature forest associates, i.e., Northern Parula (Setophaga americana) and Black-throated Green Warbler (Setophaga virens), forest generalists, i.e., Yellow-bellied Sapsucker (Sphyrapicus varius) and Swainson’s Thrush (Catharus ustulatus), early-seral specialists, i.e., Mourning Warbler (Geothlypis philadelphia) and Chestnut-sided Warbler (Setophaga pensylvanica), species associated with shrubby forest gaps, i.e., Black-throated Blue Warbler (Setophaga caerulescens), and mid-seral species, i.e., American Redstart (Setophaga ruticilla). As predicted, we found a negative numerical response to the treatment in the Black-throated Green Warbler, no treatment effect in the Yellow-bellied Sapsucker, and a positive treatment effect in early-seral specialists. We only detected a year effect in the Northern Parula and the American Redstart. There was evidence for a positive treatment effect on the Swainson’s Thrush when the regeneration started to reach the pole stage, i.e., fifth year postharvest. These findings suggest that selection harvesting has the potential to maintain diverse avian assemblages while allowing sustainable management of timber supply, but future studies should determine whether mature-forest associates can sustain second- and third-entry selection harvest treatments.
Resumo:
Avian communities in cloud forests have high levels of endemism and are at major risk given the accelerated rate of habitat fragmentation. Nevertheless, the response of these communities to changes in fragment size remains poorly understood. We evaluated species richness, bird community density, community composition, and dominance as indicators of the response to fragment size in a fragmented cloud forest landscape in central Veracruz, Mexico. Medium-sized fragments had statistically higher than expected species richness and more even communities, which may be a reflection of the intermediate disturbance hypothesis, in which medium-sized fragments are exploited by both forest and disturbance-associated species. Bird density also reached higher values in medium-sized fragments, which may indicate a carrying capacity in this habitat. However, large cloud forest fragments had a distinct taxonomic and functional composition, attributable to an increased number of understory insectivore species and canopy frugivores. By comparison, omnivorous species associated with human-altered habitats were more abundant in smaller fragments. Hence, although medium-sized cloud forest fragments had higher species richness and high bird density, large forest tracts maintained a distinct avian community composition, particularly of insectivorous and frugivorous species. Furthermore, the underlying response to fragmentation can only be properly addressed when contrasting several community attributes, such as richness, density, composition, and species dominance. Therefore, cloud forest conservation should aim to preserve the remaining large forest fragments to maintain comprehensive avian communities and avoid local extinctions.
Resumo:
Understanding the effect of habitat fragmentation is a fundamental yet complicated aim of many ecological studies. Beni savanna is a naturally fragmented forest habitat, where forest islands exhibit variation in resources and threats. To understand how the availability of resources and threats affect the use of forest islands by parrots, we applied occupancy modeling to quantify use and detection probabilities for 12 parrot species on 60 forest islands. The presence of urucuri (Attalea phalerata) and macaw (Acrocomia aculeata) palms, the number of tree cavities on the islands, and the presence of selective logging,and fire were included as covariates associated with availability of resources and threats. The model-selection analysis indicated that both resources and threats variables explained the use of forest islands by parrots. For most species, the best models confirmed predictions. The number of cavities was positively associated with use of forest islands by 11 species. The area of the island and the presence of macaw palm showed a positive association with the probability of use by seven and five species, respectively, while selective logging and fire showed a negative association with five and six species, respectively. The Blue-throated Macaw (Ara glaucogularis), the critically endangered parrot species endemic to our study area, was the only species that showed a negative association with both threats. Monitoring continues to be essential to evaluate conservation and management actions of parrot populations. Understanding of how species are using this natural fragmented habitat will help determine which fragments should be preserved and which conservation actions are needed.
Resumo:
Once abundant, the Newfoundland Gray-cheeked Thrush (Catharus minimus minimus) has declined by as much as 95% since 1975. Underlying cause(s) of this population collapse are not known, although hypotheses include loss of winter habitat and the introduction of red squirrels (Tamiasciurus hudsonicus) to Newfoundland. Uncertainties regarding habitat needs are also extensive, and these knowledge gaps are an impediment to conservation. We investigated neighborhood (i.e., within 115 m [4.1 ha]) and landscape scale (i.e., within 1250 m [490.8 ha]) habitat associations of Gray-cheeked Thrush in a 200-km² study area in the Long Range Mountains of western Newfoundland, where elevations range from 300-600 m and landcover was a matrix of old growth fir forest, 6- to 8-year-old clearcuts, coniferous scrub, bogs, and barrens. Thrushes were restricted to elevations above ~375 m, and occurrence was strongly positively related to elevation. Occurrence was also positively related to cover of tall scrub forest at the neighborhood scale, and at the landscape scale showed curvilinear relations with the proportion of both tall scrub and old growth forest that peaked with intermediate amounts of cover. Occurrence of thrushes was also highest when clearcuts made up 60%-70% of neighborhood landcover, but was negatively related to cover of clearcuts in the broader landscape. Finally, occurrence was highest in areas having 50% cover of partially harvested forest (strip cuts or row cuts) at the neighborhood scale, but because this treatment was limited to one small portion of the study area, this finding may be spurious. Taken together, our results suggest selection for mixed habitats and sensitivity to both neighborhood and landscape-scale habitat. More research is needed on responses of thrushes to forestry, including use of older clearcuts, partially harvested stands, and precommercially thinned clearcuts. Finally, restriction of thrushes to higher elevations is consistent with the hypothesis that they have been impacted by squirrels, because squirrels were rare or absent at these elevations.