42 resultados para Architecture -- Conservation and restoration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus) conservation) and delayed harvest areas (created for American marten (Martes americana atrata) conservation). This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options that specify deferment and timing of harvest for large blocks helped ensure the stable presence of an intact mature forest matrix over time. The management scenario that focused on maintaining compositional targets best supported biodiversity objectives by providing the composition patterns required by the 13 focal species, but this scenario may be improved by adding some broad-scale spatial objectives to better maintain large blocks of interior forest habitat through time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding source-sink dynamics of game birds is essential to harvest and habitat management but acquiring this information is often logistically and financially challenging using traditional methods of population surveys and banding studies. This is especially true for species such as the American Black Duck (Anas rubripes), which have low breeding densities and extensive breeding ranges that necessitate extensive surveys and banding programs across eastern North America. Despite this effort, the contribution of birds fledged from various landscapes and habitat types within specific breeding ranges to regional harvest is largely unknown but remains an important consideration in adaptive harvest management and targeted habitat conservation strategies. We investigated if stable isotope (δD, δ13C, δ15N) could augment our present understanding of connectivity between breeding and harvest areas and so provide information relevant to the two main management strategies for black ducks, harvest and habitat management. We obtained specimens from 200 hatch-year Black Duck wings submitted to the Canadian Wildlife Service Species Composition Survey. Samples were obtained from birds harvested in Western, Central, and Eastern breeding/harvest subregions to provide a sample representative of the range and harvest rate of birds harvested in Canada. We sampled only hatch-year birds to provide an unambiguous and direct link between production and harvest areas. Marine origins were assigned to 12%, 7%, and 5% of birds harvested in the Eastern, Central, and Western subregions, respectively. In contrast, 32%, 9%, and 5% of birds were assigned, respectively, to agricultural origins. All remaining birds were assigned to nonagricultural origins. We portrayed probability of origin using a combination of Bayesian statistical and GIS methods. Placement of most eastern birds was western Nova Scotia, eastern New Brunswick, Prince Edward Island, and southern Newfoundland. Agricultural birds from the Central region were consistent with the Saguenay region of Québec and the eastern claybelt with nonagricultural birds originating in the boreal. Western nonagricultural birds were associated with broad boreal origins from southern James Bay to Lake of the Woods and east to Cochrane, Ontario. Our work shows that the geographic origins, landscape, and habitat associations of hatch-year Black Ducks can be inferred using this technique and we recommend that a broad-scale isotopic study using a large sample of Canadian and US harvested birds be implemented to provide a continental perspective of source-sink population dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the northeastern United States, grassland birds regularly use agricultural fields as nesting habitat. However, birds that nest in these fields regularly experience nest failure as a result of agricultural practices, such as mowing and grazing. Therefore, information on both spatial and temporal patterns of habitat use is needed to effectively manage these species. We addressed these complex habitat use patterns by conducting point counts during three time intervals between May 21, 2002 and July 2, 2002 in agricultural fields across the Champlain Valley in Vermont and New York. Early in the breeding season, Bobolinks (Dolichonyx oryzivorus) used fields in which the landscape within 2500 m was dominated by open habitats. As mowing began, suitable habitat within 500 m became more important. Savannah Sparrows (Passerculus sandwichensis) initially used fields that contained a high proportion of suitable habitat within 500 m. After mowing, features of the field (i.e., size and amount of woody edge) became more important. Each species responded differently to mowing: Savannah Sparrows were equally abundant in mowed and uncut fields, whereas Bobolinks were more abundant in uncut fields. In agricultural areas in the Northeast, large areas (2000 ha) that are mostly nonforested and undeveloped should be targeted for conservation. Within large open areas, smaller patches (80 ha) should be maintained as high-quality, late-cut grassland habitat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, many early-succession songbird species have experienced severe and widespread declines, which often are related to habitat destruction. Field borders create additional or enhance existing early-succession habitat on farmland. However, field border shape and the landscape context surrounding farms may influence the effectiveness of field borders in contributing to the stabilization or increase of early-succession bird populations. We examined the influence of linear and nonlinear field borders on farms in landscapes dominated by either agriculture or forests on nest success and Brown-headed Cowbird (Molothrus ater) brood parasitism of Indigo Bunting (Passerina cyanea) and Blue Grosbeak (Passerina caerulea) nests combined. Field border establishment did not affect nest survival probability and brood parasitism frequency of Indigo Bunting and Blue Grosbeak nests. Indigo Bunting/Blue Grosbeak nest success probability was more than twice as high in agriculture-dominated landscapes (39%) than in forested landscapes (17%), and brood parasitism frequency was high (33%) but did not differ between landscapes. Edges in agriculture-dominated landscapes can be higher-quality habitats for early-succession birds than edges in forest-dominated landscapes, but our field border treatments did not enhance nest success for these birds on farms in either landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increases in Snow Goose (Chen caerulescens) populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H) isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB) of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native grasslands have been altered to a greater extent than any other biome in North America. The habitats and resources needed to support breeding performance of grassland birds endemic to prairie ecosystems are currently threatened by land management practices and impending climate change. Climate models for the Great Plains prairie region predict a future of hotter and drier summers with strong multiyear droughts and more frequent and severe precipitation events. We examined how fluctuations in weather conditions in eastern Colorado influenced nest survival of an avian species that has experienced recent population declines, the Mountain Plover (Charadrius montanus). Nest survival averaged 27.2% over a 7-yr period (n = 936 nests) and declined as the breeding season progressed. Nest survival was favored by dry conditions and cooler temperatures. Projected changes in regional precipitation patterns will likely influence nest survival, with positive influences of predicted declines in summer rainfall yet negative effects of more intense rain events. The interplay of climate change and land use practices within prairie ecosystems may result in Mountain Plovers shifting their distribution, changing local abundance, and adjusting fecundity to adapt to their changing environment.