20 resultados para passerine birds, biodiversity, speciation
Resumo:
There is persistent interest in understanding responses of passerine birds to habitat fragmentation, but research findings have been inconsistent and sometimes contradictory in conclusions about how birds respond to characteristics of sites they occupy, such as habitat patch size or edge density. We examined whether these inconsistencies could result from differences in the amount of habitat in the surrounding landscape, e.g., for woodland birds, the amount of tree cover in the surrounding landscape. We compared responses of 22 woodland bird species to proximate-scale tree cover in open landscapes versus wooded landscapes. Our main expectation was that woodland birds would tolerate less suitable sites (less tree cover at the site scale) in open environments where they had little choice–where little tree cover was available in the surrounding area. We compared responses using logistic regression coefficients and loess plots in open and wooded landscapes in eastern North Dakota, USA. Responses to proximate-scale tree cover were stronger, not weaker, as expected, in open landscapes. In some cases the sign of the response changed from positive to negative in contrasting landscapes. We draw two conclusions: First, observed responses to proximate habitat measures such as habitat extent or edge density cannot be interpreted reliably unless landscape context is specified. Second, birds appear more selective, not less so, where habitat is sparse. Habitat loss and fragmentation at the landscape scale are likely to reduce the usefulness of local habitat conservation, and regional drivers in land-use change can have important effects for site-scale habitat use.
Determining conservation priority areas for Palearctic passerine migrant birds in sub-Saharan Africa
Resumo:
Migratory bird species breeding in the Palearctic and overwintering in sub-Saharan Africa face multiple conservation challenges. As a result, many of these species have declined in recent decades, some dramatically. We therefore used the best available database for the distribution of 68 passerine migrants in sub-Saharan Africa to determine priority regions for their conservation. After modeling each species’ distribution using BIOMOD software, we entered the resulting species distributions at a 1° × 1° grid resolution into MARXAN software. We then used several different selection procedures that varied the boundary length modifier, species penalty factor, and the inclusion of grid cells with high human footprint and with protected areas. While results differed between selection procedures, four main regions were regularly selected: (1) one centered on southern Mali; (2) one including Eritrea, central Sudan, and northern Ethiopia; (3) one encompassing southwestern Kenya and much of Tanzania and Uganda; and (4) one including much of Zimbabwe and southwestern Zambia. We recommend that these four regions become priority regions for research and conservation efforts for the bird species considered in this study.
Resumo:
There is an imminent need for conservation and best-practice management efforts in marine ecosystems where global-scale declines in the biodiversity and biomass of large vertebrate predators are increasing and marine communities are being altered. We examine two marine-based industries that incidentally take migratory birds in Canada: (1) commercial fisheries, through bycatch, and (2) offshore oil and gas exploration, development, and production. We summarize information from the scientific literature and technical reports and also present new information from recently analyzed data to assess the magnitude and scope of mortality. Fisheries bycatch was responsible for the highest levels of incidental take of migratory bird species; estimated combined take in the longline, gillnet, and bottom otter trawl fisheries within the Atlantic, including the Gulf of St. Lawrence, and Pacific regions was 2679 to 45,586 birds per year. For the offshore oil and gas sector, mortality estimates ranged from 188 to 4494 deaths per year due to the discharge of produced waters resulting in oil sheens and collisions with platforms and vessels; however these estimates for the oil and gas sector are based on many untested assumptions. In spite of the uncertainties, we feel levels of mortality from these two industries are unlikely to affect the marine bird community in Canada, but some effects on local populations from bycatch are likely. Further research and monitoring will be required to: (1) better estimate fisheries-related mortality for vulnerable species and populations that may be impacted by local fisheries, (2) determine the effects of oil sheens from produced waters, and attraction to platforms and associated mortality from collisions, sheens, and flaring, so that better estimates of mortality from the offshore oil and gas sector can be obtained, and (3) determine impacts associated with accidental spills, which are not included in our current assessment. With a better understanding of the direct mortality of marine birds from industry, appropriate mitigation and management actions can be implemented. Cooperation from industry for data collection, research to fill knowledge gaps, and implementation of mitigation approaches will all be needed to conserve marine birds in Canada.
Resumo:
Grasslands are often grazed by cattle and many grassland birds nest on the ground, potentially exposing nests to trampling. We tested for trampling risk introduced by cattle to nests of endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) using experimentally paired grids of artificial nests (i.e., clay targets) similar in size to nests of Florida Grasshopper Sparrows and counted the number of clay targets that were broken in paired grazed and ungrazed enclosures. Clay targets in grazed grids were trampled 3.9% more often than their respective ungrazed grids, and measurements of cattle presence or density were correlated with the number of broken clay targets, suggesting that excluding cattle during breeding is an important management recommendation for the Florida Grasshopper Sparrow. Trampling rates within grazed enclosures were spatially homogeneous with respect to cattle infrastructure such as supplemental feeding troughs and fences, and forests and stocking density were poor predictors of trampling rates when excluding ungrazed grids. We used population viability analysis to compare quasi-extinction rates, intrinsic growth rates, and median abundance in grazed and ungrazed Florida Grasshopper Sparrow aggregations to further understand the biological significance of management aimed at reducing trampling rates during the breeding season. Simulations indicated that trampling from grazing increased quasi-extinction rates by 41% while reducing intrinsic growth rates by 0.048, and reducing median abundance by an average of 214 singing males after 50 years. Management should avoid grazing enclosures occupied by Florida Grasshopper Sparrows during the nesting season to minimize trampling rates. Our methods that combine trampling experiments with population viability analysis provide a framework for testing effects from trampling on other grassland ground-nesting birds, and can directly inform conservation and management of the Florida Grasshopper Sparrow.
Resumo:
We tested the hypothesis that cryptically colored eggs would suffer less predation than conspicuous eggs in the ground-nesting red-legged partridge, Alectoris rufa. We used A. rufa as a model species because it has a wide range of natural egg colors, the eggs are widely available from breeding farms, and nests are easily mimicked because they are scrapes containing no vegetation. The study was conducted in the spring of 2001 in forest and fallow fields of central Spain in Castilla La Mancha, Ciudad Real. We used 384 clutches of natural eggs that were white, white spotted, brown, or brown spotted. Within clutches, eggs were consistent in color and size; among clutches, color differences were distributed across habitats. Clutches were checked once after 2 wk of exposure. Cryptic coloration had a survival advantage that was dependent on the local suite of predators. Rodent predation was nonselective with respect to clutch color; however, avian predation was significantly higher for conspicuous clutches. In addition, there was an interaction of landscape and egg color for avian predation. In forest landscapes, the clutches with highest survival were brown spotted, whereas in fallow landscapes, brown and brown spotted clutches had higher survival than white and white potted clutches. Thus, both the predator suite and the landscape had significant effects on the value of cryptic egg coloration. Our study is relevant for conservationists and managers in charge of restocking programs in hunting areas. The release of other partridge species or their hybrids could result in hybridization with wild partridges, potentially leading to nonoptimal clutch pigmentation and reduced survival of the native species. We therefore recommend that local authorities, managers, and conservationists be cautious with the use of alien species and hybrids and release only autochthonous species of partridges within their natural ranges.
Resumo:
Although studies often report that densities of many forest birds are negatively related to urbanization, the mechanisms guiding this pattern are poorly understood. Our objective was to use a population simulation to examine the relative influence of six demographic and behavioral processes on patterns of avian abundance in urbanizing landscapes. We constructed an individual-based population simulation model representing the annual cycle of a Neotropical migratory songbird. Each simulation was performed under two landscape scenarios. The first scenario had similar proportions of high- and low-quality habitat across the urban to rural gradient. Under the first scenario, avian density was negatively related to urbanization only when rural habitats were perceived to be of higher quality than they actually were. The second landscape scenario had declining proportions of high-quality habitat as urbanization increased. Under the second scenario, each mechanism generated a negative relationship between density and urbanization. The strongest effect on density resulted when birds preferentially selected habitats in landscapes from which they fledged or were constrained from dispersing. The next strongest patterns occurred when birds directly evaluated habitat quality and accurately selected the highest-quality available territories. When birds selected habitats based on the presence of conspecifics, the density–urbanization relationship was only one-third the strength of other habitat selection mechanisms and only occurred under certain levels of population survival. Although differences in adult or nest survival in the face of random habitat selection still elicited reduced densities in urban landscapes, the relationships between urbanization and density were weaker than those produced by the conspecific attraction mechanism. Results from our study identify key predictions and areas for future research, including assessing habitat quality in urban and rural areas in order to determine if habitats in urban areas are underutilized.
Resumo:
Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded), a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded), a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.
Resumo:
Declining grassland breeding bird populations have led to increased efforts to assess habitat quality, typically by estimating density or relative abundance. Because some grassland habitats may function as ecological traps, a more appropriate metric for determining quality may be breeding success. Between 1994 and 2003 we gathered data on the nest fates of Eastern Meadowlarks (Sturnella magna), Bobolinks (Dolichonyx oryzivorous), and Savannah Sparrows (Passerculus sandwichensis) in a series of fallow fields and pastures/hayfields in western New York State. We calculated daily survival probabilities using the Mayfield method, and used the logistic-exposure method to model effects of predictor variables on nest success. Nest survival probabilities were 0.464 for Eastern Meadowlarks (n = 26), 0.483 for Bobolinks (n = 91), and 0.585 for Savannah Sparrows (n = 152). Fledge dates for first clutches ranged between 14 June and 23 July. Only one obligate grassland bird nest was parasitized by Brown-headed Cowbirds (Molothrus ater), for an overall brood parasitism rate of 0.004. Logistic-exposure models indicated that daily nest survival probabilities were higher in pastures/hayfields than in fallow fields. Our results, and those from other studies in the Northeast, suggest that properly managed cool season grassland habitats in the region may not act as ecological traps, and that obligate grassland birds in the region may have greater nest survival probabilities, and lower rates of Brown-headed Cowbird parasitism, than in many parts of the Midwest.
Resumo:
Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.
Resumo:
Understanding the relative influence of environmental variables, especially climate, in driving variation in species diversity is becoming increasingly important for the conservation of biodiversity. The objective of this study was to determine to what extent climate can explain the structure and diversity of forest bird communities by sampling bird abundance in homogenous mature spruce stands in the boreal forest of the Québec-Labrador peninsula using variance partitioning techniques. We also quantified the relationship among two climatic gradients, summer temperature and precipitation, and bird species richness, migratory strategy, and spring arrival phenology. For the bird community, climate factors appear to be most important in explaining species distribution and abundance because nearly 15% of the variation in the distribution of the 44 breeding birds selected for the analysis can be explained by climate. The vegetation variables we selected were responsible for a much smaller amount of the explained variation (4%). Breeding season temperature seems to be more important than precipitation in driving variation in bird species diversity at the scale of our analysis. Partial correlation analysis indicated that bird species richness distribution was determined by the temperature gradient, because the number of species increased with increasing breeding season temperature. Similar results were observed between breeding season temperature and the number of residents, short-distance and long-distance migrants, and early and late spring migrants. Our results suggest that the northern and southern range boundaries of species are not equally sensitive to the temperature gradient across the region.