2 resultados para the fundamental supermode

em University of Southampton, United Kingdom


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Heading into the 2020s, Physics and Astronomy are undergoing experimental revolutions that will reshape our picture of the fabric of the Universe. The Large Hadron Collider (LHC), the largest particle physics project in the world, produces 30 petabytes of data annually that need to be sifted through, analysed, and modelled. In astrophysics, the Large Synoptic Survey Telescope (LSST) will be taking a high-resolution image of the full sky every 3 days, leading to data rates of 30 terabytes per night over ten years. These experiments endeavour to answer the question why 96% of the content of the universe currently elude our physical understanding. Both the LHC and LSST share the 5-dimensional nature of their data, with position, energy and time being the fundamental axes. This talk will present an overview of the experiments and data that is gathered, and outlines the challenges in extracting information. Common strategies employed are very similar to industrial data! Science problems (e.g., data filtering, machine learning, statistical interpretation) and provide a seed for exchange of knowledge between academia and industry. Speaker Biography Professor Mark Sullivan Mark Sullivan is a Professor of Astrophysics in the Department of Physics and Astronomy. Mark completed his PhD at Cambridge, and following postdoctoral study in Durham, Toronto and Oxford, now leads a research group at Southampton studying dark energy using exploding stars called "type Ia supernovae". Mark has many years' experience of research that involves repeatedly imaging the night sky to track the arrival of transient objects, involving significant challenges in data handling, processing, classification and analysis.