1 resultado para machine learning, decision tree, concept drift, ensemble learning, classication, random forest
em University of Southampton, United Kingdom
Filtro por publicador
- Repository Napier (2)
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (8)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (23)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (12)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (8)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (110)
- CentAUR: Central Archive University of Reading - UK (9)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (16)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (52)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (5)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (172)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (28)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (1)
- University of Washington (13)
- WestminsterResearch - UK (1)
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.