7 resultados para link capacity
em University of Southampton, United Kingdom
Resumo:
What are ways of searching in graphs? In this class, we will discuss basics of link analysis, including Google's PageRank algorithm as an example. Readings: The PageRank Citation Ranking: Bringing Order to the Web, L. Page and S. Brin and R. Motwani and T. Winograd (1998) Stanford Tecnical Report
Resumo:
"Rob, Vikki, Shireen, Muzz and Delia have been randomly selected to work together to develop a presentation entitled 'The barriers to learning'. It's not an easy ride. The following 10 episodes show the journey, from their first meeting through to their impressions of the presentation and working together". Produced by the LearnHigher CETL Three areas covered by the site as follows Listening and Interpersonal Skills - the University of Leeds Oral Presentations - Brunel University Group Work - Bradford University
Resumo:
Social Computing Data Repository hosts data from a collection of many different social media sites, most of which have blogging capacity. Some of the prominent social media sites included in this repository are BlogCatalog, Twitter, MyBlogLog, Digg, StumbleUpon, del.icio.us, MySpace, LiveJournal, The Unofficial Apple Weblog (TUAW), Reddit, etc. The repository contains various facets of blog data including blog site metadata like, user defined tags, predefined categories, blog site description; blog post level metadata like, user defined tags, date and time of posting; blog posts; blog post mood (which is defined as the blogger's emotions when (s)he wrote the blog post); blogger name; blog post comments; and blogger social network.
Resumo:
Use across a series of lectures to introduce the module, focus on the topic of interdisciplinarity and get to know the group. Contains links to videos to watch
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.