1 resultado para Sense of number
em University of Southampton, United Kingdom
Filtro por publicador
- Repository Napier (3)
- University of Cagliari UniCA Eprints (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (13)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (1)
- Brock University, Canada (39)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (27)
- Center for Jewish History Digital Collections (1)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (12)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (15)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (1)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (5)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (4)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (10)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (42)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (32)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (7)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (112)
- Queensland University of Technology - ePrints Archive (323)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- Research Open Access Repository of the University of East London. (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (3)
- University of Michigan (16)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (1)
- University of Washington (7)
- WestminsterResearch - UK (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (7)
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.