3 resultados para Radial basis function network
em University of Southampton, United Kingdom
Resumo:
In this class, we will discuss the nature of network evolution and some selected network processes. We will discuss graph generation algorithms that generate networks with different interesting characteristics. Optional : The Structure and Function of Complex Networks (chapter 8), M.E.J. Newman, SIAM Review 45 167--256 (2003); Optional: Emergence of Scaling in Random Networks, A.L. Barabasi and R. Albert, Science 286, 509 (1999)
Resumo:
In this class, we will discuss network theory fundamentals, including concepts such as diameter, distance, clustering coefficient and others. We will also discuss different types of networks, such as scale-free networks, random networks etc. Readings: Graph structure in the Web, A. Broder and R. Kumar and F. Maghoul and P. Raghavan and S. Rajagopalan and R. Stata and A. Tomkins and J. Wiener Computer Networks 33 309--320 (2000) [Web link, Alternative Link] Optional: The Structure and Function of Complex Networks, M.E.J. Newman, SIAM Review 45 167--256 (2003) [Web link] Original course at: http://kmi.tugraz.at/staff/markus/courses/SS2008/707.000_web-science/
Resumo:
Abstract 1: Social Networks such as Twitter are often used for disseminating and collecting information during natural disasters. The potential for its use in Disaster Management has been acknowledged. However, more nuanced understanding of the communications that take place on social networks are required to more effectively integrate this information into the processes within disaster management. The type and value of information shared should be assessed, determining the benefits and issues, with credibility and reliability as known concerns. Mapping the tweets in relation to the modelled stages of a disaster can be a useful evaluation for determining the benefits/drawbacks of using data from social networks, such as Twitter, in disaster management.A thematic analysis of tweets’ content, language and tone during the UK Storms and Floods 2013/14 was conducted. Manual scripting was used to determine the official sequence of events, and classify the stages of the disaster into the phases of the Disaster Management Lifecycle, to produce a timeline. Twenty- five topics discussed on Twitter emerged, and three key types of tweets, based on the language and tone, were identified. The timeline represents the events of the disaster, according to the Met Office reports, classed into B. Faulkner’s Disaster Management Lifecycle framework. Context is provided when observing the analysed tweets against the timeline. This illustrates a potential basis and benefit for mapping tweets into the Disaster Management Lifecycle phases. Comparing the number of tweets submitted in each month with the timeline, suggests users tweet more as an event heightens and persists. Furthermore, users generally express greater emotion and urgency in their tweets.This paper concludes that the thematic analysis of content on social networks, such as Twitter, can be useful in gaining additional perspectives for disaster management. It demonstrates that mapping tweets into the phases of a Disaster Management Lifecycle model can have benefits in the recovery phase, not just in the response phase, to potentially improve future policies and activities. Abstract2: The current execution of privacy policies, as a mode of communicating information to users, is unsatisfactory. Social networking sites (SNS) exemplify this issue, attracting growing concerns regarding their use of personal data and its effect on user privacy. This demonstrates the need for more informative policies. However, SNS lack the incentives required to improve policies, which is exacerbated by the difficulties of creating a policy that is both concise and compliant. Standardization addresses many of these issues, providing benefits for users and SNS, although it is only possible if policies share attributes which can be standardized. This investigation used thematic analysis and cross- document structure theory, to assess the similarity of attributes between the privacy policies (as available in August 2014), of the six most frequently visited SNS globally. Using the Jaccard similarity coefficient, two types of attribute were measured; the clauses used by SNS and the coverage of forty recommendations made by the UK Information Commissioner’s Office. Analysis showed that whilst similarity in the clauses used was low, similarity in the recommendations covered was high, indicating that SNS use different clauses, but to convey similar information. The analysis also showed that low similarity in the clauses was largely due to differences in semantics, elaboration and functionality between SNS. Therefore, this paper proposes that the policies of SNS already share attributes, indicating the feasibility of standardization and five recommendations are made to begin facilitating this, based on the findings of the investigation.