23 resultados para Ontology mining

em University of Southampton, United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This class introduces basics of web mining and information retrieval including, for example, an introduction to the Vector Space Model and Text Mining. Guest Lecturer: Dr. Michael Granitzer Optional: Modeling the Internet and the Web: Probabilistic Methods and Algorithms, Pierre Baldi, Paolo Frasconi, Padhraic Smyth, Wiley, 2003 (Chapter 4, Text Analysis)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an audio recording which introduces and summarises this project.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relates to the following software for analysing Blackboard stats http://www.edshare.soton.ac.uk/11134/ Is supporting material for the following podcast: http://youtu.be/yHxCzjiYBoU

Relevância:

20.00% 20.00%

Publicador:

Resumo:

peaker(s): Jon Hare Organiser: Time: 25/06/2014 11:00-11:50 Location: B32/3077 Abstract The aggregation of items from social media streams, such as Flickr photos and Twitter tweets, into meaningful groups can help users contextualise and effectively consume the torrents of information on the social web. This task is challenging due to the scale of the streams and the inherently multimodal nature of the information being contextualised. In this talk I'll describe some of our recent work on trend and event detection in multimedia data streams. We focus on scalable streaming algorithms that can be applied to multimedia data streams from the web and the social web. The talk will cover two particular aspects of our work: mining Twitter for trending images by detecting near duplicates; and detecting social events in multimedia data with streaming clustering algorithms. I'll will describe in detail our techniques, and explore open questions and areas of potential future work, in both these tasks.