3 resultados para Machines à vapeur
em University of Southampton, United Kingdom
Resumo:
Many of the most successful and important systems that impact our lives combine humans, data, and algorithms at Web Scale. These social machines are amalgamations of human and machine intelligence. This seminar will provide an update on SOCIAM, a five year EPSRC Programme Grant that seeks to gain a better understanding of social machines; how they are observed and constituted, how they can be designed and their fate determined. We will review how social machines can be of value to society, organisations and individuals. We will consider the challenges they present to our various disciplines.
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.
Resumo:
Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.