4 resultados para Big Brother
em University of Southampton, United Kingdom
Resumo:
Abstract: Big Data has been characterised as a great economic opportunity and a massive threat to privacy. Both may be correct: the same technology can indeed be used in ways that are highly beneficial and those that are ethically intolerable, maybe even simultaneously. Using examples of how Big Data might be used in education - normally referred to as "learning analytics" - the seminar will discuss possible ethical and legal frameworks for Big Data, and how these might guide the development of technologies, processes and policies that can deliver the benefits of Big Data without the nightmares. Speaker Biography: Andrew Cormack is Chief Regulatory Adviser, Jisc Technologies. He joined the company in 1999 as head of the JANET-CERT and EuroCERT incident response teams. In his current role he concentrates on the security, policy and regulatory issues around the network and services that Janet provides to its customer universities and colleges. Previously he worked for Cardiff University running web and email services, and for NERC's Shipboard Computer Group. He has degrees in Mathematics, Humanities and Law.
Resumo:
Abstract Big data nowadays is a fashionable topic, independently of what people mean when they use this term. But being big is just a matter of volume, although there is no clear agreement in the size threshold. On the other hand, it is easy to capture large amounts of data using a brute force approach. So the real goal should not be big data but to ask ourselves, for a given problem, what is the right data and how much of it is needed. For some problems this would imply big data, but for the majority of the problems much less data will and is needed. In this talk we explore the trade-offs involved and the main problems that come with big data using the Web as case study: scalability, redundancy, bias, noise, spam, and privacy. Speaker Biography Ricardo Baeza-Yates Ricardo Baeza-Yates is VP of Research for Yahoo Labs leading teams in United States, Europe and Latin America since 2006 and based in Sunnyvale, California, since August 2014. During this time he has lead the labs in Barcelona and Santiago de Chile. Between 2008 and 2012 he also oversaw the Haifa lab. He is also part time Professor at the Dept. of Information and Communication Technologies of the Universitat Pompeu Fabra, in Barcelona, Spain. During 2005 he was an ICREA research professor at the same university. Until 2004 he was Professor and before founder and Director of the Center for Web Research at the Dept. of Computing Science of the University of Chile (in leave of absence until today). He obtained a Ph.D. in CS from the University of Waterloo, Canada, in 1989. Before he obtained two masters (M.Sc. CS & M.Eng. EE) and the electronics engineer degree from the University of Chile in Santiago. He is co-author of the best-seller Modern Information Retrieval textbook, published in 1999 by Addison-Wesley with a second enlarged edition in 2011, that won the ASIST 2012 Book of the Year award. He is also co-author of the 2nd edition of the Handbook of Algorithms and Data Structures, Addison-Wesley, 1991; and co-editor of Information Retrieval: Algorithms and Data Structures, Prentice-Hall, 1992, among more than 500 other publications. From 2002 to 2004 he was elected to the board of governors of the IEEE Computer Society and in 2012 he was elected for the ACM Council. He has received the Organization of American States award for young researchers in exact sciences (1993), the Graham Medal for innovation in computing given by the University of Waterloo to distinguished ex-alumni (2007), the CLEI Latin American distinction for contributions to CS in the region (2009), and the National Award of the Chilean Association of Engineers (2010), among other distinctions. In 2003 he was the first computer scientist to be elected to the Chilean Academy of Sciences and since 2010 is a founding member of the Chilean Academy of Engineering. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow.
Resumo:
An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.