19 resultados para Data structures (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.