20 resultados para Data processing Computer science
Resumo:
This talk will present an overview of the ongoing ERCIM project SMARTDOCS (SeMAntically-cReaTed DOCuments) which aims at automatically generating webpages from RDF data. It will particularly focus on the current issues and the investigated solutions in the different modules of the project, which are related to document planning, natural language generation and multimedia perspectives. The second part of the talk will be dedicated to the KODA annotation system, which is a knowledge-base-agnostic annotator designed to provide the RDF annotations required in the document generation process.
Resumo:
Abstract: Big Data has been characterised as a great economic opportunity and a massive threat to privacy. Both may be correct: the same technology can indeed be used in ways that are highly beneficial and those that are ethically intolerable, maybe even simultaneously. Using examples of how Big Data might be used in education - normally referred to as "learning analytics" - the seminar will discuss possible ethical and legal frameworks for Big Data, and how these might guide the development of technologies, processes and policies that can deliver the benefits of Big Data without the nightmares. Speaker Biography: Andrew Cormack is Chief Regulatory Adviser, Jisc Technologies. He joined the company in 1999 as head of the JANET-CERT and EuroCERT incident response teams. In his current role he concentrates on the security, policy and regulatory issues around the network and services that Janet provides to its customer universities and colleges. Previously he worked for Cardiff University running web and email services, and for NERC's Shipboard Computer Group. He has degrees in Mathematics, Humanities and Law.
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.
Resumo:
Abstract Big data nowadays is a fashionable topic, independently of what people mean when they use this term. But being big is just a matter of volume, although there is no clear agreement in the size threshold. On the other hand, it is easy to capture large amounts of data using a brute force approach. So the real goal should not be big data but to ask ourselves, for a given problem, what is the right data and how much of it is needed. For some problems this would imply big data, but for the majority of the problems much less data will and is needed. In this talk we explore the trade-offs involved and the main problems that come with big data using the Web as case study: scalability, redundancy, bias, noise, spam, and privacy. Speaker Biography Ricardo Baeza-Yates Ricardo Baeza-Yates is VP of Research for Yahoo Labs leading teams in United States, Europe and Latin America since 2006 and based in Sunnyvale, California, since August 2014. During this time he has lead the labs in Barcelona and Santiago de Chile. Between 2008 and 2012 he also oversaw the Haifa lab. He is also part time Professor at the Dept. of Information and Communication Technologies of the Universitat Pompeu Fabra, in Barcelona, Spain. During 2005 he was an ICREA research professor at the same university. Until 2004 he was Professor and before founder and Director of the Center for Web Research at the Dept. of Computing Science of the University of Chile (in leave of absence until today). He obtained a Ph.D. in CS from the University of Waterloo, Canada, in 1989. Before he obtained two masters (M.Sc. CS & M.Eng. EE) and the electronics engineer degree from the University of Chile in Santiago. He is co-author of the best-seller Modern Information Retrieval textbook, published in 1999 by Addison-Wesley with a second enlarged edition in 2011, that won the ASIST 2012 Book of the Year award. He is also co-author of the 2nd edition of the Handbook of Algorithms and Data Structures, Addison-Wesley, 1991; and co-editor of Information Retrieval: Algorithms and Data Structures, Prentice-Hall, 1992, among more than 500 other publications. From 2002 to 2004 he was elected to the board of governors of the IEEE Computer Society and in 2012 he was elected for the ACM Council. He has received the Organization of American States award for young researchers in exact sciences (1993), the Graham Medal for innovation in computing given by the University of Waterloo to distinguished ex-alumni (2007), the CLEI Latin American distinction for contributions to CS in the region (2009), and the National Award of the Chilean Association of Engineers (2010), among other distinctions. In 2003 he was the first computer scientist to be elected to the Chilean Academy of Sciences and since 2010 is a founding member of the Chilean Academy of Engineering. In 2009 he was named ACM Fellow and in 2011 IEEE Fellow.