3 resultados para wave forecasting
em Universidad del Rosario, Colombia
Resumo:
The aim of this study was to compare the contrast visual processing of concentric sinusoidal gratings stimuli between adolescents and adults. The study included 20 volunteers divided into two groups: 10 adolescents aged 13-19 years (M=16.5, SD=1.65) and 10 adults aged 20-26 years (M=21.8, SD=2.04). In order to measure the contrast sensitivity at spatial frequencies of 0.6, 2.5, 5 and 20 degrees of visual angle (cpd), it was used the psychophysical method of two alternative forced choice (2AFC). A One Way ANOVA performance showed a significant difference in the comparison between groups: F [(4, 237)=3.74, p<.05]. The post-hoc Tukey HSD showed a significant difference between the frequencies of 0.6 (p <.05) and 20 cpd (p<.05). Thus, the results showed that the visual perception behaves differently with regard to the sensory mechanisms that render the contrast towards adolescents and adults. These results are useful to better characterize and comprehend human vision development.
Resumo:
Este documento estima modelos lineales y no-lineales de corrección de errores para los precios spot de cuatro tipos de café. En concordancia con las leyes económicas, se encuentra evidencia que cuando los precios están por encima de su nivel de equilibrio, retornan a éste mas lentamente que cuando están por debajo. Esto puede reflejar el hecho que, en el corto plazo, para los países productores de café es mas fácil restringir la oferta para incrementar precios, que incrementarla para reducirlos. Además, se encuentra evidencia que el ajuste es más rápido cuando las desviaciones del equilibrio son mayores. Los pronósticos que se obtienen a partir de los modelos de corrección de errores no lineales y asimétricos considerados en el trabajo, ofrecen una leve mejoría cuando se comparan con los pronósticos que resultan de un modelo de paseo aleatorio.
Resumo:
In this paper we use the most representative models that exist in the literature on term structure of interest rates. In particular, we explore affine one factor models and polynomial-type approximations such as Nelson and Siegel. Our empirical application considers monthly data of USA and Colombia for estimation and forecasting. We find that affine models do not provide adequate performance either in-sample or out-of-sample. On the contrary, parsimonious models such as Nelson and Siegel have adequate results in-sample, however out-of-sample they are not able to systematically improve upon random walk base forecast.