2 resultados para threshold random variable

em Universidad del Rosario, Colombia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La variable aleatoria es una función matemática que permite asignar valores numéricos a cada uno de los posibles resultados obtenidos en un evento de naturaleza aleatoria. Si el número de estos resultados se puede contar, se tiene un conjunto discreto; por el contrario, cuando el número de resultados es infinito y no se puede contar, se tiene un conjunto continuo. El objetivo de la variable aleatoria es permitir adelantar estudios probabilísticos y estadísticos a partir del establecimiento de una asignación numérica a través de la cual se identifiquen cada uno de los resultados que pueden ser obtenidos en el desarrollo de un evento determinado. El valor esperado y la varianza son los parámetros por medio de los cuales es posible caracterizar el comportamiento de los datos reunidos en el desarrollo de una situación experimental; el valor esperado permite establecer el valor sobre el cual se centra la distribución de la probabilidad, mientras que la varianza proporciona información acerca de la manera como se distribuyen los datos obtenidos. Adicionalmente, las distribuciones de probabilidad son funciones numéricas asociadas a la variable aleatoria que describen la asignación de probabilidad para cada uno de los elementos del espacio muestral y se caracterizan por ser un conjunto de parámetros que establecen su comportamiento funcional, es decir, cada uno de los parámetros propios de la distribución suministra información del experimento aleatorio al que se asocia. El documento se cierra con una aproximación de la variable aleatoria a procesos de toma de decisión que implican condiciones de riesgo e incertidumbre.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este documento se revisa teóricamente la distribución de probabilidad de Poisson como función que asigna a cada suceso definido, sobre una variable aleatoria discreta, la probabilidad de ocurrencia en un intervalo de tiempo o región del espacio disjunto. Adicionalmente se revisa la distribución exponencial negativa empleada para modelar el intervalo de tiempo entre eventos consecutivos de Poisson que ocurren de manera independiente; es decir, en los cuales la probabilidad de ocurrencia de los eventos sucedidos en un intervalo de tiempo no depende de los ocurridos en otros intervalos de tiempo, por esta razón se afirma que es una distribución que no tiene memoria. El proceso de Poisson relaciona la función de Poisson, que representa un conjunto de eventos independientes sucedidos en un intervalo de tiempo o región del espacio con los tiempos dados entre la ocurrencia de los eventos según la distribución exponencial negativa. Los anteriores conceptos se usan en la teoría de colas, rama de la investigación de operaciones que describe y brinda soluciones a situaciones en las que un conjunto de individuos o elementos forman colas en espera de que se les preste un servicio, por lo cual se presentan ejemplos de aplicación en el ámbito médico.