3 resultados para short tandem repeat

em Universidad del Rosario, Colombia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Multi-drug resistance and severe/ complicated cases are the emerging phenotypes of vivax malaria, which may deteriorate current anti-malarial control measures. The emergence of these phenotypes could be associated with either of the two Plasmodium vivax lineages. The two lineages had been categorized as Old World and New World, based on geographical sub-division and genetic and phenotypical markers. This study revisited the lineage hypothesis of P. vivax by typing the distribution of lineages among global isolates and evaluated their genetic relatedness using a panel of new mini-satellite markers. Methods: 18S SSU rRNA S-type gene was amplified from 420 Plasmodium vivax field isolates collected from different geographical regions of India, Thailand and Colombia as well as four strains each of P. vivax originating from Nicaragua, Panama, Thailand (Pak Chang), and Vietnam (ONG). A mini-satellite marker panel was then developed to understand the population genetic parameters and tested on a sample subset of both lineages. Results: 18S SSU rRNA S-type gene typing revealed the distribution of both lineages (Old World and New World) in all geographical regions. However, distribution of Plasmodium vivax lineages was highly variable in every geographical region. The lack of geographical sub-division between lineages suggests that both lineages are globally distributed. Ten mini-satellites were scanned from the P. vivax genome sequence; these tandem repeats were located in eight of the chromosomes. Mini-satellites revealed substantial allelic diversity (7-21, AE = 14.6 +/- 2.0) and heterozygosity (He = 0.697-0.924, AE = 0.857 +/- 0.033) per locus. Mini-satellite comparison between the two lineages revealed high but similar pattern of genetic diversity, allele frequency, and high degree of allele sharing. A Neighbour-Joining phylogenetic tree derived from genetic distance data obtained from ten mini-satellites also placed both lineages together in every cluster. Conclusions: The global lineage distribution, lack of genetic distance, similar pattern of genetic diversity, and allele sharing strongly suggested that both lineages are a single species and thus new emerging phenotypes associated with vivax malaria could not be clearly classified as belonging to a particular lineage on basis of their geographical origin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Plasmodium vivax continues to be the most widely distributed malarial parasite species in tropical and sub-tropical areas, causing high morbidity indices around the world. Better understanding of the proteins used by the parasite during the invasion of red blood cells is required to obtain an effective vaccine against this disease. This study describes characterizing the P. vivax asparagine-rich protein (PvARP) and examines its antigenicity in natural infection. Methods The target gene in the study was selected according to a previous in silico analysis using profile hidden Markov models which identified P. vivax proteins that play a possible role in invasion. Transcription of the arp gene in the P. vivax VCG-1 strain was here evaluated by RT-PCR. Specific human antibodies against PvARP were used to confirm protein expression by Western blot as well as its subcellular localization by immunofluorescence. Recognition of recombinant PvARP by sera from P. vivax-infected individuals was evaluated by ELISA. Results VCG-1 strain PvARP is a 281-residue-long molecule, which is encoded by a single exon and has an N-terminal secretion signal, as well as a tandem repeat region. This protein is expressed in mature schizonts and is located on the surface of merozoites, having an apparent accumulation towards their apical pole. Sera from P. vivax-infected patients recognized the recombinant, thereby suggesting that this protein is targeted by the immune response during infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El síndrome Down (SD) es la trisomía más común en humanos, presentándose en 1 de cada 745 nacidos vivos y es la causa más frecuente de retardo mental. El origen más observado de la trisomíaes una no disyunción meiótica (95%), la cual generalmente es de origen materno, mientras un 5% se debe a errores post-cigóticos mitóticos. Objetivo: identificar el origen parental delcromosoma 21 extra, el momento del error no disyuncional y establecer una correlación entre estos eventos y las manifestaciones fenotípicas de los pacientes afectados. Materiales y métodos: se estudiaron cincuenta familias con un hijo con SD mediante el uso de cinco short tandem repeats (STR) a lo largo de 21q, se construyeron los haplotipos de cada paciente y sus padres, determinandoel origen parental y el momento en que surgió el error no disyuncional. Resultados:en 80% de las familias el error fue en meiosis I y 20% en la meiosis II; 98% de los cromosomasadicionales fue de origen materno y 2% paterno. Se encontró correlación genotipo-fenotipo en ocho características estudiadas: cuello corto y ancho, tercera fontanela, labio inferior prominente, paladar estrecho y corto, raíz del hélix cruzando la concha, alopecia, pliegue único palmar yotras anomalías como nevus y xeroderma y eventos de recombinación en 24,5% de las familias analizadas. Conclusiones: la edad materna y la variación en el número de recombinaciones está asociada con no disyunciones meióticas I y II; se encontró correlación entre el momento del errorno disyuncional y algunas variables clínicas.