2 resultados para high-strength and high-modulus fibres

em Universidad del Rosario, Colombia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Objective: Evidence shows an association between muscular strength (MS) and health among youth, however low muscular strength cut-points for the detection of high metabolic risk in Latin-American populations are scarce. The aim of this study was two-fold: to explore potential age- and sex-specific thresholds of MS, for optimal cardiometabolic risk categorization among Colombian children and adolescents; and to investigate if cardiometabolic risk differed by MS group by applying the receiver operating characteristic curve (ROC) cut point. Methods: This is a secondary analysis of a cross-sectional study (the FUPRECOL study), published elsewhere. The FUPRECOL study assessments were conducted during the 2014– 2015 school year. MS was estimated by a handle dynamometer on 1,950 children and adolescents from Colombia, using the MS relative to weight (handgrip strength/body mass). A metabolic risk score was computed from the following components: waist circumference, triglycerides, HDL-c, glucose, systolic and diastolic blood pressure. ROC analysis showed a significant discriminatory accuracy of MS in identifying the low/high metabolic risk in children and adolescents and both gender. Results: In children, handgrip strength/body mass level for a low metabolic risk were 0.359 and 0.376 in girls and boys, respectively. In adolescents, these points were 0.440 and 0.447 in girls and boys, respectively. Conclusion: In conclusion, the results suggest a hypothetical MS level relative to weight for having a low metabolic risk, which could be used to identify youths at risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.