2 resultados para aquatic insect larvae

em Universidad del Rosario, Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work the toxic activity of extracts of Eupatorium microphyllum L.F. was evaluated on 4th instar larvae of the mosquito Aedes aegypti (Linneaus), under laboratory conditions. Aqueous extracts were utilized in concentrations of 500 mg L-1, 1,500 mg L-1 and 2,500 mg L-1 and acetone in concentrations of 10 mg L-1, 20 mg L-1, 30 mg L-1, 40 mg L-1and 50 mg L-1. The bioassays were carried out for triplicate each one with 20 larvae, exposed for 24 hours to 150 mL of solution. In all the bioassays were employed control groups. In the evaluation of the acetone extracts, a negative control was employed to avoid that the mortality of the larvae to occur on account of the solvent. The Aqueous extracts showed low moderate action in the mortality of larvae, less than 20%. On the contrary, the action of the acetone extracts was observed to 10 and 20 mg L-1with 15% of mortality, while to 30 and 40 mg L-1 were registered 22 to 38% of mortality. However, to 50 mg L-1 the mortality was of 95.4% with highly significant statistical results. The concentrations of the acetone extracts showed to be the most efficient for the control of the mosquitoes selected. Both types of extracts showed toxic effect in larvae of A. aegypti, nevertheless, greater effect in the acetone extracts was observed relating to the aqueous extracts of E. microphyllum, which constitutes a viable alternative in the search of new larvicides from composed natural.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue and Chikungunya viruses cause the most important arthropod-borne viral infections for humans. These viruses are predominant in tropical and subtropical regions. In addition, these viruses are predominant in tropical and subtropical regions. Dengue mortality rate is around 1.2 to 3.5% and deaths due to chikungunya fever are around 1 in 1000; however, half of chikungunya-infected patients evolve into a chronic state that can persist for months up to years. There are no antiviral drugs available for DENV and CHIKV treatment and prevention. Moreover, vector control strategies have failed so far. Thus, the development of potent inhibitors for a broad spectrum of RNA viruses is urgently needed. We established and characterized a new embryonic insect cell line from Culex quinquefasciatus mosquito. Also we established the flaviviruses and alphavirus replication, both in C6/36 and Lulo insect cell lines, as well as in Vero cell line. In addition we carried out a reference compound library and reference panel of assays and data for DENV, which provides a benchmark for further studies. During this study, a panel of 9 antiviral molecules, with proven in vitro anti-dengue virus activity and that act at different stages of the DENV life cycle, was selected. Finally, Favipiravir or T-705, was identified as inhibitor in vitro and in vivo of alphaviruses and the mutation K291R in nsP4, which is responsible of the polymerase activity, was found as the mode of action in CHIKV. Interestingly, lysine in motif F1 is also highly conserved in positive-stranded RNA viruses and this might explain the broad spectrum of T-705 antiviral activity.