4 resultados para Robust Learning Algorithm

em Universidad del Rosario, Colombia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta disertación busca estudiar los mecanismos de transmisión que vinculan el comportamiento de agentes y firmas con las asimetrías presentes en los ciclos económicos. Para lograr esto, se construyeron tres modelos DSGE. El en primer capítulo, el supuesto de función cuadrática simétrica de ajuste de la inversión fue removido, y el modelo canónico RBC fue reformulado suponiendo que des-invertir es más costoso que invertir una unidad de capital físico. En el segundo capítulo, la contribución más importante de esta disertación es presentada: la construcción de una función de utilidad general que anida aversión a la pérdida, aversión al riesgo y formación de hábitos, por medio de una función de transición suave. La razón para hacerlo así es el hecho de que los individuos son aversos a la pérdidad en recesiones, y son aversos al riesgo en auges. En el tercer capítulo, las asimetrías en los ciclos económicos son analizadas junto con ajuste asimétrico en precios y salarios en un contexto neokeynesiano, con el fin de encontrar una explicación teórica de la bien documentada asimetría presente en la Curva de Phillips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What is the relationship between the type of training combatants receive upon recruitment into an armed group and their propensity to abuse civilians in civil war? Does military training or political training prevent or exacerbate the victimization of civilians by armed non-state actors? While the literature on civilian victimization has expanded rapidly, few studies have examined the correlation between abuse of civilians and the modes of training that illegal armed actors receive. Using a simple formal model, we develop hypotheses regarding this connection and argue that while military training should not decrease the probability that a combatant engages in civilian abuse, political training should. We test these hypotheses using a new survey consisting of a representative sample of approximately 1,500 demobilized combatants from the Colombian conflict, which we match with department-level data on civilian casualties. The empirical analysis confirms our hypotheses about the connection between training and civilian abuse and the results are robust to adding a full set of controls both at the department and at the individual level

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.