2 resultados para Relativistic many-body perturbation theory
em Universidad del Rosario, Colombia
Resumo:
El interés de este trabajo es el de analizar la Política Exterior de la Republica Popular China, más específicamente la conocida como Desarrollo Pacífico, y su incidencia en las disputas territoriales del Sudeste Asiático. El trabajo se dividirá en 3 partes, donde cada una tratara distintos aspectos del Desarrollo Pacífico, y través del mismo se explicará como por medio de distintos conceptos se pueden entender las múltiples posiciones chinas, así como las preocupaciones de los países que conforman el bloque ASEAN. El propósito de este documento será demostrar que a pesar de que dicha política ha ayudado de forma sustancial a mejorar las relaciones entre ambos bandos y ha traído bastantes beneficios políticos, no ha sido suficiente para eliminar la tensión en la zona y dar una solución a las disputas que se viven.
Resumo:
We consider two–sided many–to–many matching markets in which each worker may work for multiple firms and each firm may hire multiple workers. We study individual and group manipulations in centralized markets that employ (pairwise) stable mechanisms and that require participants to submit rank order lists of agents on the other side of the market. We are interested in simple preference manipulations that have been reported and studied in empirical and theoretical work: truncation strategies, which are the lists obtained by removing a tail of least preferred partners from a preference list, and the more general dropping strategies, which are the lists obtained by only removing partners from a preference list (i.e., no reshuffling). We study when truncation / dropping strategies are exhaustive for a group of agents on the same side of the market, i.e., when each match resulting from preference manipulations can be replicated or improved upon by some truncation / dropping strategies. We prove that for each stable mechanism, truncation strategies are exhaustive for each agent with quota 1 (Theorem 1). We show that this result cannot be extended neither to group manipulations (even when all quotas equal 1 – Example 1), nor to individual manipulations when the agent’s quota is larger than 1 (even when all other agents’ quotas equal 1 – Example 2). Finally, we prove that for each stable mechanism, dropping strategies are exhaustive for each group of agents on the same side of the market (Theorem 2), i.e., independently of the quotas.