2 resultados para Particulate Reinforcement
em Universidad del Rosario, Colombia
Resumo:
The reinforcement omission effects have been traditionally interpreted in terms of: behavioral facilitation after reinforcement omission induced by primary frustration or behavioral suppression after reinforcement delivery induced by postconsummatory states. The studies reviewed here indicate that amygdala is involved in modulation of these effects. However, the fact that amygdala lesions, extensive or selective, can eliminate, reduce and enhance the omission effects makes it difficult to understand how it is the exact nature of their involvement. The amygdala is related to several functions that depend on its connections with other brain systems. Thus, it is necessary to consider the involvement of a more complex neural network in the modulation of the reinforcement omission effects. The connection of amygdala subareas to cortical and subcortical structures may be involved in this modulation since they also are linked to processes related to reward and expectancy.
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.