4 resultados para NonLinear programming

em Universidad del Rosario, Colombia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this expository arti le is to present a self- ontained overview of some results on the hara terization of the optimal value fun tion of a sto hasti target problem as (dis ontinuous) vis osity solution of a ertain dynami programming PDE and its appli ation to the problem of hedging ontingent laims in the presen e of portfolio onstraints and large investors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.