3 resultados para Model-based bootstrap
em Universidad del Rosario, Colombia
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.
Resumo:
In this paper we introduce a financial market model based on continuos time random motions with alternanting constant velocities and with jumps ocurring when the velocity switches. if jump directions are in the certain corresondence with the velocity directions of the underlyng random motion with respect to the interest rate, the model is free of arbitrage. The replicating strategies for options are constructed in details. Closed form formulas for the opcion prices are obtained.