3 resultados para Development time
em Universidad del Rosario, Colombia
Resumo:
El flebótomo Lutzomyia spinicrassa es vector de Leishmania braziliensis y tiene amplia distribución en plantaciones de café en Colombia y Venezuela. Metodología: Se estableció una colonia en condiciones de laboratorio a partir de 600 hembras de L. spinicrassa capturadas en el campo y mantenidas a temperatura de 23º C y humedad relativa de 70%. El tiempo de desarrollo desde huevo hasta adulto osciló entre 58 y 78 días, en promedio 11 semanas. Se compararon parámetros poblacionales de la especie obtenidos a partir de cinco generaciones sucesivas mantenidas en grupos, con una generación criada individualmente. Resultados: Se obtuvieron los siguientes parámetros en cada condición experimental: tasa neta de reproducción (6,92 y 7 hembras por hembra por generación), tasa intrínseca de incremento poblacional (0,17 y 0,18 hembras por hembra por semana) y tasa finita de incremento poblacional (1,06 y 1,19 individuos por hembra por semana). Conclusión: Estos datos sugieren que la colonia de L. spinicrassa tuvo un incremento constante durante las seis generaciones analizadas.
Resumo:
Many connections in the basal ganglia are made around birth when animals are exposed to a host of new affective, cognitive, and sensori-motor stimuli. It is thought that dopamine modulates cortico-striatal synapses that result in the strengthening of those connections that lead to desired outcomes. We propose that there must be a time before which stimuli cannot be processed into functional connections, otherwise it would imply an effective link between stimulus, response, and reward in uterus. Consistent with these ideas, we present evidence that early in development dopamine neurons are electrically immature and do not produce high-frequency firing in response to salient stimuli. We ask first, what makes dopamine neurons immature? and second, what are the implications of this immaturity for the basal ganglia? As an answer to the first question, we find that at birth the outward current is small (3nS-V), insensitive to Ca2z, TEA, BK, and SK blockers. Rapidly after birth, the outward current increases to 15nS-V and becomes sensitive to Ca2z, TEA, BK, and SK blockers. We make a detailed analysis of the kinetics of the components of the outward currents and produce a model for BK and SK channels that we use to reproduce the outward current, and to infer the geometrical arrangement of BK and Ca2z channels in clusters. In the first cluster, T-type Ca2z and BK channels are coupled within distances of *20 nm (200 A˚). The second cluster consists of L-type Ca2z and BK channels that are spread over distances of at least 60 nm. As for the second question, we propose that early in development, the mechanism of action selection is in a ‘‘locked-in’’ state that would prevent dopamine neurons from reinforcing cortico-striatal synapses that do not have a functional experiential- based value.
Resumo:
Many connections in the basal ganglia are made around birth when animals are exposed to a host of new affective, cognitive, and sensori-motor stimuli. It is thought that dopamine modulates cortico-striatal synapses that result in the strengthening of those connections that lead to desired outcomes. We propose that there must be a time before which stimuli cannot be processed into functional connections, otherwise it would imply an effective link between stimulus, response, and reward in uterus. Consistent with these ideas, we present evidence that early in development dopamine neurons are electrically immature and do not produce high-frequency firing in response to salient stimuli. We ask first, what makes dopamine neurons immature? and second, what are the implications of this immaturity for the basal ganglia? As an answer to the first question, we find that at birth the outward current is small (3nS-V), insensitive to Ca2+, TEA, BK, and SK blockers. Rapidly after birth, the outward current increases to 15nS-V and becomes sensitive to Ca2+, TEA, BK, and SK blockers. We make a detailed analysis of the kinetics of the components of the outward currents and produce a model for BK and SK channels that we use to reproduce the outward current, and to infer the geometrical arrangement of BK and Ca2+ channels in clusters. In the first cluster, T-type Ca2+ and BK channels are coupled within distances of similar to 20 nm (200 parallel to). The second cluster consists of L-type Ca2+ and BK channels that are spread over distances of at least 60 nm. As for the second question, we propose that early in development, the mechanism of action selection is in a "locked-in" state that would prevent dopamine neurons from reinforcing cortico-striatal synapses that do not have a functional experiential-based value.