2 resultados para Chemical etching method combining static etching and dynamic etching
em Universidad del Rosario, Colombia
Resumo:
Ecological validity of static and intense facial expressions in emotional recognition has been questioned. Recent studies have recommended the use of facial stimuli more compatible to the natural conditions of social interaction, which involves motion and variations in emotional intensity. In this study, we compared the recognition of static and dynamic facial expressions of happiness, fear, anger and sadness, presented in four emotional intensities (25 %, 50 %, 75 % and 100 %). Twenty volunteers (9 women and 11 men), aged between 19 and 31 years, took part in the study. The experiment consisted of two sessions in which participants had to identify the emotion of static (photographs) and dynamic (videos) displays of facial expressions on the computer screen. The mean accuracy was submitted to an Anova for repeated measures of model: 2 sexes x [2 conditions x 4 expressions x 4 intensities]. We observed an advantage for the recognition of dynamic expressions of happiness and fear compared to the static stimuli (p < .05). Analysis of interactions showed that expressions with intensity of 25 % were better recognized in the dynamic condition (p < .05). The addition of motion contributes to improve recognition especially in male participants (p < .05). We concluded that the effect of the motion varies as a function of the type of emotion, intensity of the expression and sex of the participant. These results support the hypothesis that dynamic stimuli have more ecological validity and are more appropriate to the research with emotions.
Resumo:
Introduction. Fractal geometry measures the irregularity of abstract and natural objects with the fractal dimension. Fractal calculations have been applied to the structures of the human body and to quantifications in physiology from the theory of dynamic systems.Material and Methods. The fractal dimensions were calculated, the number of occupation spaces in the space border of box counting and the area of two red blood cells groups, 7 normal ones, group A, and 7 abnormal, group B, coming from patient and of bags for transfusion, were calculated using the method of box counting and a software developed for such effect. The obtained measures were compared, looking for differences between normal and abnormal red blood cells, with the purpose of differentiating samples.Results. The abnormality characterizes by a number of squares of occupation of the fractal space greater or equal to 180; values of areas between 25.117 and 33.548 correspond to normality. In case that the evaluation according to the number of pictures is of normality, must be confirmed with the value of the area applied to adjacent red blood cells within the sample, that in case of having values by outside established and/or the greater or equal spaces to 180, they suggest abnormality of the sample.Conclusions. The developed methodology is effective to differentiate the red globules alterations and probably useful in the analysis of bags of transfusion for clinical use