3 resultados para wave-functions

em Universitat de Girona, Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method of extracting effective atomic orbitals and effective minimal basis sets from molecular wave function characterizing the state of an atom in a molecule is developed in the framework of the "fuzzy" atoms. In all cases studied, there were as many effective orbitals that have considerable occupation numbers as orbitals in the classical minimal basis. That is considered to be of high conceptual importance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach