4 resultados para user-centered approach
em Universitat de Girona, Spain
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
En años recientes,la Inteligencia Artificial ha contribuido a resolver problemas encontrados en el desempeño de las tareas de unidades informáticas, tanto si las computadoras están distribuidas para interactuar entre ellas o en cualquier entorno (Inteligencia Artificial Distribuida). Las Tecnologías de la Información permiten la creación de soluciones novedosas para problemas específicos mediante la aplicación de los hallazgos en diversas áreas de investigación. Nuestro trabajo está dirigido a la creación de modelos de usuario mediante un enfoque multidisciplinario en los cuales se emplean los principios de la psicología, inteligencia artificial distribuida, y el aprendizaje automático para crear modelos de usuario en entornos abiertos; uno de estos es la Inteligencia Ambiental basada en Modelos de Usuario con funciones de aprendizaje incremental y distribuido (conocidos como Smart User Model). Basándonos en estos modelos de usuario, dirigimos esta investigación a la adquisición de características del usuario importantes y que determinan la escala de valores dominantes de este en aquellos temas en los cuales está más interesado, desarrollando una metodología para obtener la Escala de Valores Humanos del usuario con respecto a sus características objetivas, subjetivas y emocionales (particularmente en Sistemas de Recomendación).Una de las áreas que ha sido poco investigada es la inclusión de la escala de valores humanos en los sistemas de información. Un Sistema de Recomendación, Modelo de usuario o Sistemas de Información, solo toman en cuenta las preferencias y emociones del usuario [Velásquez, 1996, 1997; Goldspink, 2000; Conte and Paolucci, 2001; Urban and Schmidt, 2001; Dal Forno and Merlone, 2001, 2002; Berkovsky et al., 2007c]. Por lo tanto, el principal enfoque de nuestra investigación está basado en la creación de una metodología que permita la generación de una escala de valores humanos para el usuario desde el modelo de usuario. Presentamos resultados obtenidos de un estudio de casos utilizando las características objetivas, subjetivas y emocionales en las áreas de servicios bancarios y de restaurantes donde la metodología propuesta en esta investigación fue puesta a prueba.En esta tesis, las principales contribuciones son: El desarrollo de una metodología que, dado un modelo de usuario con atributos objetivos, subjetivos y emocionales, se obtenga la Escala de Valores Humanos del usuario. La metodología propuesta está basada en el uso de aplicaciones ya existentes, donde todas las conexiones entre usuarios, agentes y dominios que se caracterizan por estas particularidades y atributos; por lo tanto, no se requiere de un esfuerzo extra por parte del usuario.