3 resultados para user agents
em Universitat de Girona, Spain
Resumo:
La comunitat científica que treballa en Intel·ligència Artificial (IA) ha dut a terme una gran quantitat de treball en com la IA pot ajudar a les persones a trobar el que volen dins d'Internet. La idea dels sistemes recomanadors ha estat extensament acceptada pels usuaris. La tasca principal d'un sistema recomanador és localitzar ítems, fonts d'informació i persones relacionades amb els interessos i preferències d'una persona o d'un grup de persones. Això comporta la construcció de models d'usuari i l'habilitat d'anticipar i predir les preferències de l'usuari. Aquesta tesi està focalitzada en l'estudi de tècniques d'IA que millorin el rendiment dels sistemes recomanadors. Inicialment, s'ha dut a terme un anàlisis detallat de l'actual estat de l'art en aquest camp. Aquest treball ha estat organitzat en forma de taxonomia on els sistemes recomanadors existents a Internet es classifiquen en 8 dimensions generals. Aquesta taxonomia ens aporta una base de coneixement indispensable pel disseny de la nostra proposta. El raonament basat en casos (CBR) és un paradigma per aprendre i raonar a partir de la experiència adequat per sistemes recomanadors degut als seus fonaments en el raonament humà. Aquesta tesi planteja una nova proposta de CBR aplicat al camp de la recomanació i un mecanisme d'oblit per perfils basats en casos que controla la rellevància i edat de les experiències passades. Els resultats experimentals demostren que aquesta proposta adapta millor els perfils als usuaris i soluciona el problema de la utilitat que pateixen el sistemes basats en CBR. Els sistemes recomanadors milloren espectacularment la qualitat dels resultats quan informació sobre els altres usuaris és utilitzada quan es recomana a un usuari concret. Aquesta tesi proposa l'agentificació dels sistemes recomanadors per tal de treure profit de propietats interessants dels agents com ara la proactivitat, la encapsulació o l'habilitat social. La col·laboració entre agents es realitza a partir del mètode de filtratge basat en la opinió i del mètode col·laboratiu de filtratge a partir de confiança. Els dos mètodes es basen en un model social de confiança que fa que els agents siguin menys vulnerables als altres quan col·laboren. Els resultats experimentals demostren que els agents recomanadors col·laboratius proposats milloren el rendiment del sistema mentre que preserven la privacitat de les dades personals de l'usuari. Finalment, aquesta tesi també proposa un procediment per avaluar sistemes recomanadors que permet la discussió científica dels resultats. Aquesta proposta simula el comportament dels usuaris al llarg del temps basat en perfils d'usuari reals. Esperem que aquesta metodologia d'avaluació contribueixi al progrés d'aquesta àrea de recerca.
Resumo:
La gestió de xarxes és un camp molt ampli i inclou molts aspectes diferents. Aquesta tesi doctoral està centrada en la gestió dels recursos en les xarxes de banda ampla que disposin de mecanismes per fer reserves de recursos, com per exemple Asynchronous Transfer Mode (ATM) o Multi-Protocol Label Switching (MPLS). Es poden establir xarxes lògiques utilitzant els Virtual Paths (VP) d'ATM o els Label Switched Paths (LSP) de MPLS, als que anomenem genèricament camins lògics. Els usuaris de la xarxa utilitzen doncs aquests camins lògics, que poden tenir recursos assignats, per establir les seves comunicacions. A més, els camins lògics són molt flexibles i les seves característiques es poden canviar dinàmicament. Aquest treball, se centra, en particular, en la gestió dinàmica d'aquesta xarxa lògica per tal de maximitzar-ne el rendiment i adaptar-la a les connexions ofertes. En aquest escenari, hi ha diversos mecanismes que poden afectar i modificar les característiques dels camins lògics (ample de banda, ruta, etc.). Aquests mecanismes inclouen els de balanceig de la càrrega (reassignació d'ample de banda i reencaminament) i els de restauració de fallades (ús de camins lògics de backup). Aquests dos mecanismes poden modificar la xarxa lògica i gestionar els recursos (ample de banda) dels enllaços físics. Per tant, existeix la necessitat de coordinar aquests mecanismes per evitar possibles interferències. La gestió de recursos convencional que fa ús de la xarxa lògica, recalcula periòdicament (per exemple cada hora o cada dia) tota la xarxa lògica d'una forma centralitzada. Això introdueix el problema que els reajustaments de la xarxa lògica no es realitzen en el moment en què realment hi ha problemes. D'altra banda també introdueix la necessitat de mantenir una visió centralitzada de tota la xarxa. En aquesta tesi, es proposa una arquitectura distribuïda basada en un sistema multi agent. L'objectiu principal d'aquesta arquitectura és realitzar de forma conjunta i coordinada la gestió de recursos a nivell de xarxa lògica, integrant els mecanismes de reajustament d'ample de banda amb els mecanismes de restauració preplanejada, inclosa la gestió de l'ample de banda reservada per a la restauració. Es proposa que aquesta gestió es porti a terme d'una forma contínua, no periòdica, actuant quan es detecta el problema (quan un camí lògic està congestionat, o sigui, quan està rebutjant peticions de connexió dels usuaris perquè està saturat) i d'una forma completament distribuïda, o sigui, sense mantenir una visió global de la xarxa. Així doncs, l'arquitectura proposada realitza petits rearranjaments a la xarxa lògica adaptant-la d'una forma contínua a la demanda dels usuaris. L'arquitectura proposada també té en consideració altres objectius com l'escalabilitat, la modularitat, la robustesa, la flexibilitat i la simplicitat. El sistema multi agent proposat està estructurat en dues capes d'agents: els agents de monitorització (M) i els de rendiment (P). Aquests agents estan situats en els diferents nodes de la xarxa: hi ha un agent P i diversos agents M a cada node; aquests últims subordinats als P. Per tant l'arquitectura proposada es pot veure com una jerarquia d'agents. Cada agent és responsable de monitoritzar i controlar els recursos als que està assignat. S'han realitzat diferents experiments utilitzant un simulador distribuït a nivell de connexió proposat per nosaltres mateixos. Els resultats mostren que l'arquitectura proposada és capaç de realitzar les tasques assignades de detecció de la congestió, reassignació dinàmica d'ample de banda i reencaminament d'una forma coordinada amb els mecanismes de restauració preplanejada i gestió de l'ample de banda reservat per la restauració. L'arquitectura distribuïda ofereix una escalabilitat i robustesa acceptables gràcies a la seva flexibilitat i modularitat.
Resumo:
En años recientes,la Inteligencia Artificial ha contribuido a resolver problemas encontrados en el desempeño de las tareas de unidades informáticas, tanto si las computadoras están distribuidas para interactuar entre ellas o en cualquier entorno (Inteligencia Artificial Distribuida). Las Tecnologías de la Información permiten la creación de soluciones novedosas para problemas específicos mediante la aplicación de los hallazgos en diversas áreas de investigación. Nuestro trabajo está dirigido a la creación de modelos de usuario mediante un enfoque multidisciplinario en los cuales se emplean los principios de la psicología, inteligencia artificial distribuida, y el aprendizaje automático para crear modelos de usuario en entornos abiertos; uno de estos es la Inteligencia Ambiental basada en Modelos de Usuario con funciones de aprendizaje incremental y distribuido (conocidos como Smart User Model). Basándonos en estos modelos de usuario, dirigimos esta investigación a la adquisición de características del usuario importantes y que determinan la escala de valores dominantes de este en aquellos temas en los cuales está más interesado, desarrollando una metodología para obtener la Escala de Valores Humanos del usuario con respecto a sus características objetivas, subjetivas y emocionales (particularmente en Sistemas de Recomendación).Una de las áreas que ha sido poco investigada es la inclusión de la escala de valores humanos en los sistemas de información. Un Sistema de Recomendación, Modelo de usuario o Sistemas de Información, solo toman en cuenta las preferencias y emociones del usuario [Velásquez, 1996, 1997; Goldspink, 2000; Conte and Paolucci, 2001; Urban and Schmidt, 2001; Dal Forno and Merlone, 2001, 2002; Berkovsky et al., 2007c]. Por lo tanto, el principal enfoque de nuestra investigación está basado en la creación de una metodología que permita la generación de una escala de valores humanos para el usuario desde el modelo de usuario. Presentamos resultados obtenidos de un estudio de casos utilizando las características objetivas, subjetivas y emocionales en las áreas de servicios bancarios y de restaurantes donde la metodología propuesta en esta investigación fue puesta a prueba.En esta tesis, las principales contribuciones son: El desarrollo de una metodología que, dado un modelo de usuario con atributos objetivos, subjetivos y emocionales, se obtenga la Escala de Valores Humanos del usuario. La metodología propuesta está basada en el uso de aplicaciones ya existentes, donde todas las conexiones entre usuarios, agentes y dominios que se caracterizan por estas particularidades y atributos; por lo tanto, no se requiere de un esfuerzo extra por parte del usuario.