5 resultados para tissue heterogeneity

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emergent molecular measurement methods, such as DNA microarray, qRTPCR, and many others, offer tremendous promise for the personalized treatment of cancer. These technologies measure the amount of specific proteins, RNA, DNA or other molecular targets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumor specimens are heterogeneous; an individual specimen typically contains unknown amounts of multiple tissues types. Thus, the measured molecular concentrations result from an unknown mixture of tissue types, and must be normalized to account for the composition of the mixture. For example, a breast tumor biopsy may contain normal, dysplastic and cancerous epithelial cells, as well as stromal components (fatty and connective tissue) and blood and lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic and cancerous epithelial cells. The remaining tissue components serve to “contaminate” the signal of interest. The proportion of each of the tissue components changes as a function of patient characteristics (e.g., age), and varies spatially across the tumor region. Because each of the tissue components produces a different molecular signature, and the amount of each tissue type is specimen dependent, we must estimate the tissue composition of the specimen, and adjust the molecular signal for this composition. Using the idea of a chemical mass balance, we consider the total measured concentrations to be a weighted sum of the individual tissue signatures, where weights are determined by the relative amounts of the different tissue types. We develop a compositional source apportionment model to estimate the relative amounts of tissue components in a tumor specimen. We then use these estimates to infer the tissuespecific concentrations of key molecular targets for sub-typing individual tumors. We anticipate these specific measurements will greatly improve our ability to discriminate between different classes of tumors, and allow more precise matching of each patient to the appropriate treatment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.