7 resultados para the least squares distance method
em Universitat de Girona, Spain
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasingly popular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigational adaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
In the accounting literature, interaction or moderating effects are usually assessed by means of OLS regression and summated rating scales are constructed to reduce measurement error bias. Structural equation models and two-stage least squares regression could be used to completely eliminate this bias, but large samples are needed. Partial Least Squares are appropriate for small samples but do not correct measurement error bias. In this article, disattenuated regression is discussed as a small sample alternative and is illustrated on data of Bisbe and Otley (in press) that examine the interaction effect of innovation and style of use of budgets on performance. Sizeable differences emerge between OLS and disattenuated regression
Resumo:
La tecnología LiDAR (Light Detection and Ranging), basada en el escaneado del territorio por un telémetro láser aerotransportado, permite la construcción de Modelos Digitales de Superficie (DSM) mediante una simple interpolación, así como de Modelos Digitales del Terreno (DTM) mediante la identificación y eliminación de los objetos existentes en el terreno (edificios, puentes o árboles). El Laboratorio de Geomática del Politécnico de Milán – Campus de Como- desarrolló un algoritmo de filtrado de datos LiDAR basado en la interpolación con splines bilineares y bicúbicas con una regularización de Tychonov en una aproximación de mínimos cuadrados. Sin embargo, en muchos casos son todavía necesarios modelos más refinados y complejos en los cuales se hace obligatorio la diferenciación entre edificios y vegetación. Este puede ser el caso de algunos modelos de prevención de riesgos hidrológicos, donde la vegetación no es necesaria; o la modelización tridimensional de centros urbanos, donde la vegetación es factor problemático. (...)
Resumo:
Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression
Resumo:
Colour image segmentation based on the hue component presents some problems due to the physical process of image formation. One of that problems is colour clipping, which appear when at least one of the sensor components is saturated. We have designed a system, that works for a trained set of colours, to recover the chromatic information of those pixels on which colour has been clipped. The chromatic correction method is based on the fact that hue and saturation are invariant to the uniform scaling of the three RGB components. The proposed method has been validated by means of a specific colour image processing board that has allowed its execution in real time. We show experimental results of the application of our method
Resumo:
The absolute necessity of obtaining 3D information of structured and unknown environments in autonomous navigation reduce considerably the set of sensors that can be used. The necessity to know, at each time, the position of the mobile robot with respect to the scene is indispensable. Furthermore, this information must be obtained in the least computing time. Stereo vision is an attractive and widely used method, but, it is rather limited to make fast 3D surface maps, due to the correspondence problem. The spatial and temporal correspondence among images can be alleviated using a method based on structured light. This relationship can be directly found codifying the projected light; then each imaged region of the projected pattern carries the needed information to solve the correspondence problem. We present the most significant techniques, used in recent years, concerning the coded structured light method