3 resultados para surface processes

em Universitat de Girona, Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemical composition of sediments and rocks, as well as their distribution at the Martian surface, represent a long term archive of processes, which have formed the planetary surface. A survey of chemical compositions by means of Compositional Data Analysis represents a valuable tool to extract direct evidence for weathering processes and allows to quantify weathering and sedimentation rates. clr-biplot techniques are applied for visualization of chemical relationships across the surface (“chemical maps”). The variability among individual suites of data is further analyzed by means of clr-PCA, in order to extract chemical alteration vectors between fresh rocks and their crusts and for an assessment of different source reservoirs accessible to soil formation. Both techniques are applied to elucidate the influence of remote weathering by combined analysis of several soil forming branches. Vector analysis in the Simplex provides the opportunity to study atmosphere surface interactions, including the role and composition of volcanic gases

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La millora de la productivitat i la qualitat són indubtablement dues de les principals exigències del sector productiu modern i factors clau per la competitivitat i la supervivència. Dins aquest sector,la fabricació per arrancada de material juga encara avui en dia un paper protagonista tot i l'aparició de noves tècniques de conformat per addició.Indústries com l'aeronàutica, l'automobilística,la del motlle o l'energètica, depenen en bona part de les prestacions de les màquines-eina. Aquesta Tesi aborda dos aspectes rellevants quan es tracta de millorar de la productivitat i la qualitat del sector productiu: el problema del fimbrament, més conegut per la denominació anglosaxona chatter,i la monitorització de la rugositat superficial en el mecanitzat a alta velocitat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to the composition of the planets crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind, while Na and K originate from volatilized materials partitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. We will discuss these processes but focus more on the expected surface composition and solar wind particle sputtering which releases material like Ca and other elements from the surface minerals and discuss the relevance of composition modelling