4 resultados para statistical software

em Universitat de Girona, Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compositional data naturally arises from the scientific analysis of the chemical composition of archaeological material such as ceramic and glass artefacts. Data of this type can be explored using a variety of techniques, from standard multivariate methods such as principal components analysis and cluster analysis, to methods based upon the use of log-ratios. The general aim is to identify groups of chemically similar artefacts that could potentially be used to answer questions of provenance. This paper will demonstrate work in progress on the development of a documented library of methods, implemented using the statistical package R, for the analysis of compositional data. R is an open source package that makes available very powerful statistical facilities at no cost. We aim to show how, with the aid of statistical software such as R, traditional exploratory multivariate analysis can easily be used alongside, or in combination with, specialist techniques of compositional data analysis. The library has been developed from a core of basic R functionality, together with purpose-written routines arising from our own research (for example that reported at CoDaWork'03). In addition, we have included other appropriate publicly available techniques and libraries that have been implemented in R by other authors. Available functions range from standard multivariate techniques through to various approaches to log-ratio analysis and zero replacement. We also discuss and demonstrate a small selection of relatively new techniques that have hitherto been little-used in archaeometric applications involving compositional data. The application of the library to the analysis of data arising in archaeometry will be demonstrated; results from different analyses will be compared; and the utility of the various methods discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este trabajo se describe la solución ideada para la implantación de un Sistema de Información Geográfica que debe dar servicio al Instituto Universitario del Agua y del Medio Ambiente de la Universidad de Murcia y al Instituto Euromediterráneo del Agua. Dada la naturaleza de ambas instituciones, se trata de una herramienta orientada fundamentalmente al estudio de recursos hídricos y procesos hidrológicos. El proceso se inició con una identificación de las necesidades de los usuarios (con perfiles y requerimiento diferentes) y el posterior desarrollo del diseño conceptual que pudiera asegurar la satisfacción de estas necesidades. Debido a que los requerimientos de los usuarios así lo demandaban, se ha tenido en cuenta tanto a usuarios que trabajan en entorno linux como a otros que lo hacen en entorno windows. Se ha optado por un sistema basado en software libre utilizando GRASS para el manejo de información raster y modelización; postgis (sobre postgreSQL) y GRASS para la gestión de información vectorial; y QGIS, gvSIG y Kosmo como interfaces gráficas de usuario. Otros programas utilizados para propósitos específicos han sido R, Mapserver o GMT