4 resultados para spatial transformation
em Universitat de Girona, Spain
Resumo:
A version of Matheron’s discrete Gaussian model is applied to cell composition data. The examples are for map patterns of felsic metavolcanics in two different areas. Q-Q plots of the model for cell values representing proportion of 10 km x 10 km cell area underlain by this rock type are approximately linear, and the line of best fit can be used to estimate the parameters of the model. It is also shown that felsic metavolcanics in the Abitibi area of the Canadian Shield can be modeled as a fractal
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocks based on compositional statistics is introduced. It improves and generalizes the common joins-count statistics known from map analysis in geographic information systems. Assigning phases independently to objects in RD is modelled by a single-trial multinomial random function Z(x), where the probabilities of phases add to one and are explicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistencies of the tests based on the conventional joins{count statistics and their possibly contradictory interpretations are avoided. In practical applications we assume that the probabilities of phases do not depend on the location but are identical everywhere in the domain of de nition. Thus, the model involves the sum of r independent identical multinomial distributed 1-trial random variables which is an r-trial multinomial distributed random variable. The probabilities of the distribution of the r counts can be considered as a composition in the Q-part simplex SQ. They span the so called Hardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This is a generalisation of the well-known Hardy-Weinberg law of genetics. If the assignment of phases accounts for some kind of spatial dependence, then the r-trial probabilities do not remain on H. This suggests the use of the Aitchison distance between observed probabilities to H to test dependence. Moreover, when there is a spatial uctuation of the multinomial probabilities, the observed r-trial probabilities move on H. This shift can be used as to check for these uctuations. A practical procedure and an algorithm to perform the test have been developed. Some cases applied to simulated and real data are presented. Key words: Spatial distribution of crystals in rocks, spatial distribution of phases, joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinberg manifold, Aitchison geometry
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the Rodrigues Triple Junction in the Indian Ocean were studied applying classical statistical methods (fuzzy c-means clustering, linear mixing model, principal component analysis) for the extraction of endmembers and evaluating the spatial and temporal variation of geochemical signals. Three main factors of sedimentation were expected by the marine geologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. The display of fuzzy membership values and/or factor scores versus depth provided consistent results for two factors only; the ultra-basic component could not be identified. The reason for this may be that only traditional statistical methods were applied, i.e. the untransformed components were used and the cosine-theta coefficient as similarity measure. During the last decade considerable progress in compositional data analysis was made and many case studies were published using new tools for exploratory analysis of these data. Therefore it makes sense to check if the application of suitable data transformations, reduction of the D-part simplex to two or three factors and visual interpretation of the factor scores would lead to a revision of earlier results and to answers to open questions . In this paper we follow the lines of a paper of R. Tolosana- Delgado et al. (2005) starting with a problem-oriented interpretation of the biplot scattergram, extracting compositional factors, ilr-transformation of the components and visualization of the factor scores in a spatial context: The compositional factors will be plotted versus depth (time) of the core samples in order to facilitate the identification of the expected sources of the sedimentary process. Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
En esta investigación se ha estudiado la relación entre dos subsistemas de la memoria de trabajo (bucle fonológico y agenda viso-espacial) y el rendimiento en cálculo con una muestra de 94 niños españoles de 7-8 años. Hemos administrado dos pruebas de cálculo diseñadas para este estudio y seis medidas simples de memoria de trabajo (de contenido verbal, numérico y espacial) de la «Batería de Tests de Memoria de Treball» de Pickering, Baqués y Gathercole (1999), y dos pruebas visuales complementarias. Los resultados muestran una correlación importante entre las medidas de contenido verbal y numérico y el rendimiento en cálculo. En cambio, no hemos encontrado ninguna relación con las medidas espaciales. Se concluye, por lo tanto, que en escolares españoles existe una relación importante entre el bucle fonológico y el rendimiento en tareas de cálculo. En cambio, el rol de la agenda viso-espacial es nulo