2 resultados para salinity gradient power
em Universitat de Girona, Spain
Resumo:
Our purpose in this article is to define a network structure which is based on two egos instead of the egocentered (one ego) or the complete network (n egos). We describe the characteristics and properties for this kind of network which we call “nosduocentered network”, comparing it with complete and egocentered networks. The key point for this kind of network is that relations exist between the two main egos and all alters, but relations among others are not observed. After that, we use new social network measures adapted to the nosduocentered network, some of which are based on measures for complete networks such as degree, betweenness, closeness centrality or density, while some others are tailormade for nosduocentered networks. We specify three regression models to predict research performance of PhD students based on these social network measures for different networks such as advice, collaboration, emotional support and trust. Data used are from Slovenian PhD students and their s
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV